Alan Smithee 发布的文章

学习如何使用 Lua 编程语言为物联网(IoT)设备编程,并与树莓派上的通用输入/输出(GPIO)引脚互动。

Lua 是一种有时会被误解的语言。它与 Python 等其他语言不同,但它是一种通用的扩展语言,广泛用于游戏引擎、框架等。总的来说,我发现 Lua 对开发人员来说是一个有价值的工具,可以让他们以一些强大的方式增强和扩展他们的项目。

你可以按照 Seth Kenlon 的文章《Lua 值得学习吗?》的介绍下载并运行常用的 Lua,该文章中还包括了简单的 Lua 代码示例。但是,要充分利用 Lua,最好将它与采用该语言的框架一起使用。在本教程中,我演示了如何使用名为 Mako Server 的框架,该框架旨在使 Lua 程序员能够轻松地编写 IoT 和 Web 应用代码。我还向你展示了如何使用 API 扩展此框架以使用树莓派的 GPIO 引脚。

要求

在学习本教程之前,你需要一个可以登录的正在运行的树莓派。虽然我将在本教程中编译 C 代码,但你不需要任何 C 代码经验。但是,你需要一些使用 POSIX 终端的经验。

安装

首先,在树莓派上打开一个终端窗口并安装以下工具,以使用 Git 下载代码和编译 C 代码:

$ sudo apt install git unzip gcc make

接下来,通过运行以下命令编译开源 Mako Server 代码和 lua-periphery 库(树莓派的 GPIO 库):

$ wget -O Mako-Server-Build.sh \
  https://raw.githubusercontent.com/RealTimeLogic/BAS/main/RaspberryPiBuild.sh

查看脚本以了解它的作用,并在你觉得没问题后运行它:

$ sh ./Mako-Server-Build.sh

编译过程可能需要一些时间,尤其是在较旧的树莓派上。编译完成后,脚本会要求你将 Mako Server 和 lua-periphery 模块安装到 /usr/local/bin/。我建议安装它以简化软件的使用。别担心,如果你不再需要它,你可以卸载它:

$ cd /usr/local/bin/
$ sudo rm mako mako.zip periphery.so

要测试安装,请在终端中输入 mako。这将启动 Mako 服务器,并在你的终端中看到一些输出。你可以按 CTRL+C 停止服务器。

IoT 和 Lua

现在 Mako 服务器已在你的树莓派上设置好,你可以开始对 IoT 和 Web 应用进行编程,并使用 Lua 操作树莓派的 GPIO 引脚。Mako Server 框架为 Lua 开发人员提供了一个强大而简单的 API 来创建物联网应用,而 lua-periphery 模块让 Lua 开发人员可以与树莓派的 GPIO 引脚和其他外围设备进行交互。

首先创建一个应用目录和一个 .preload 脚本,其中插入用于测试 GPIO 的 Lua 代码。.preload 脚本是一个 Mako 服务器扩展,在应用启动时作为 Lua 脚本加载和运行。

$ mkdir gpiotst
$ nano gpiotst/.preload

将以下内容复制到 Nano 编辑器 中并保存文件:

-- Load periphery.so and access the LED interface
local LED = require('periphery').LED

local function doled()
  local led = LED("led0") -- Open LED led0
  trace"Turn LED on"
  led:write(true)   -- Turn on LED (set max brightness)
  ba.sleep(3000)    -- 3 seconds
  trace"Turn LED off"
  led:write(false)  -- Turn off LED (set zero brightness)
  led:close()
end

ba.thread.run(doled) -- Defer execution
                     -- to after Mako has started

上面的 Lua 代码使用你编译并包含在 Mako 服务器中的 Lua-periphery 库控制树莓派 LED。该脚本定义了一个名为 doled 的函数来控制 LED。该脚本首先使用 Lua require 函数加载 periphery 库(共享库 periphery.so)。返回的数据是一个包含所有 GPIO API 函数的 Lua 表。但是,你只需要 LED API,你可以通过在调用 require 后附加 .LED 来直接访问它。接下来,代码定义了一个名为 doled 的函数,它执行以下操作:

  • 通过调用 periphery 库中的 LED 函数,并将字符串 led0 传给它,打开树莓派主 LED,识别为 led0
  • 将消息 Turn LED on 打印到跟踪(控制台)。
  • 通过调用 LED 对象上的 write 方法并将布尔值 true 传递给它来激活 LED,该值设置 LED 的最大亮度。
  • 通过调用 ba.sleep(3000) 等待 3 秒。
  • 将消息 Turn LED off 打印到跟踪。
  • 通过调用 LED 对象上的 write 方法并将布尔值 false 传递给它来停用 LED,这会将 LED 的亮度设置为零。
  • 通过调用 LED 对象上的 close 函数关闭 LED

.preload 脚本的末尾,doled 函数作为参数传递给 ba.thread.run 函数。这允许将 doled 函数的执行推迟到 Mako 服务器启动之后。

要启动 gpiotst 应用,请按如下方式运行 Mako 服务器:

$ mako -l::gpiotst

控制台中打印以下文本:

Opening LED:
opening 'brightness': Permission denied.

访问 GPIO 需要 root 访问权限,因此按 CTRL+C 停止服务器并重新启动 Mako 服务器,如下所示:

$ sudo mako -l::gpiotst

现在树莓派 LED 亮起 3 秒。成功!

Lua 解锁 IoT

在本入门教程中,你学习了如何编译 Mako 服务器,包括 GPIO Lua 模块,以及如何编写用于打开和关闭树莓派 LED 的基本 Lua 脚本。在以后的文章中,我将在本文的基础上进一步介绍 IoT 功能。

同时,你可以通过阅读它的 文档 来更深入地研究 Lua-periphery GPIO 库,以了解有关功能以及如何将其与不同外设一起使用的更多信息。要充分利用本教程,请考虑关注 交互式 Mako Server Lua 教程 以更好地了解 Lua、Web 和 IoT。编码愉快!

(题图:MJ/4514210d-5697-4cd3-8c44-450bbe56be64)


via: https://opensource.com/article/23/3/control-your-raspberry-pi-lua

作者:Alan Smithee 选题:lkxed 译者:geekpi 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

它不仅仅是为了让你的电脑启动得更快。

当 systemd 刚问世时,有很多关于它能加快启动时间的消息。这项功能对大多数人都有吸引力(对那些不重启的人来说就不那么重要了),所以在很多方面,这也是它今天仍然拥有的声誉。虽然 systemd 确实是在启动过程中并行启动服务起到了作用,但它的作用远不止于此。以下是你可能没有意识到 systemd 可以做的三件事,但你应该好好利用。

1、简化 Linux ps

如果你曾经使用过 ps,甚至只是 top 命令,那么你就会知道你的电脑一直都在运行数百个进程。有时,这正是你需要的信息,以便了解你的计算机或其用户在做什么。其他时候,你真正需要的是一个总体的概览。

systemd-cgtop 命令提供了一个基于 控制组 cgroup 任务安排的计算机负载的简单视图。控制组 对现代 Linux 很重要,基本上是容器和 Kubernetes 的底层支持结构(这也是云计算可以扩展的原因),但它们也是家庭电脑上的有用结构。例如,从 systemd-cgtop 的输出中,你可以看到用户进程的负载,而不是系统进程:

Control Group               Proc+   %CPU   Memory  Input/s Output/s
/                             183    5.0     1.6G       0B     3.0M
user.slice                      4    2.8     1.1G       0B   174.7K
user.slice/user-1000.slice      4    2.8   968.2M       0B   174.7K
system.slice                   65    2.2     1.5G       0B     2.8M

你也可以只查看你的用户空间进程,或者查看用户空间进程和内核线程。

这绝不是对 topps 的替代,而是从一个不同的、独特的角度来观察你的系统。在运行容器时,它可能是至关重要的,因为容器使用控制组。

2、Linux 定时任务

Cron 是 Linux 的一个经典组件。当你想安排一些事情定期发生时,你会使用 Cron。它很可靠,而且相当好地集成到你的系统中。

问题是,Cron 并不了解有些计算机会被关闭。如果你有一个安排在午夜的 Cron 任务,但你每天在 23:59 关闭你的电脑,那么你的 Cron 任务就永远不会运行。Cron 没有任何工具可以检测到一夜之间错过了工作。

作为对这个问题的回答,有一个很好的 Anacron,但它不像 Cron 那样集成的好。要让 Anacron 运行,你需要做很多设置。

第二个选择是 systemd 计时器。和 Cron 一样,它也是内置的,可以随时使用。你需要写一个单元文件,这肯定比单行的 Crontab 条目多,但也很简单。例如,这里有一个单元文件,在开机 30 分钟后运行一个假想的备份脚本,但每天只运行一次。这可以确保我的电脑得到备份,并防止它每天尝试备份超过一次。

[Unit]
Description=Backup
Requires=myBackup.service

[Timer]
OnBootSec=30min
OnUnitActiveSec=1d

[Install]
WantedBy=timers.target

当然,你也可以干预并提示运行一个任务。多亏了 OnUnitActiveSec 指令,systemd 不会试图运行你手动激活的作业。

3、运行 Linux 容器

容器使启动一个复杂的服务变得非常容易。你可以在短短几分钟内运行一个 Mattermost 或 Discourse 服务器。在某些情况下,困难的部分是在你运行容器后管理和监控它们。Podman 使得管理它们变得容易,但是用什么来管理 Podman 呢?嗯,你可以使用 systemd

Podman 有一个内置的命令来生成单元文件,这样你的容器就可以被 systemd 管理和监控:

$ podman generate systemd --new --files --name example_pod

然后你所要做的就是启动服务:

$ systemctl --user start pod-example_pod.service

和其他服务一样,systemd 确保你的容器荚在任何情况下都能运行。它记录问题,你可以用 journalctl 和其他重要的日志来查看,你也可以用 systemd-cgtop 在控制组中监控它的活动。

它不是 Kubernetes 平台,但对于一两个容器来说,你只需要在可靠和可预测的基础上提供服务,Podman 和 systemd 是一对很棒的组合。

下载 systemd 电子书

systemd 的内容还有很多,你可以从作者 David Both 的新书《systemd 实用指南》中了解基础知识,以及很多实用的技巧。


via: https://opensource.com/article/23/3/3-things-you-didnt-know-systemd-could-do

作者:Alan Smithee 选题:lkxed 译者:wxy 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

用于操控无线调制解调器的 AT 设备包是 RTOS 最流行的扩展功能之一。

RTOS 是一个开源的 嵌入式设备操作系统,由 RT-Thread 开发。它为开发者提供了标准化的、友好的基础架构,开发者可以基于各种设备编写代码,它包含大量有用的类库和工具包,使开发过程更加便捷。

RTOS 使用的是模块方式,以便于扩展,这一点跟 Linux 类似。各种软件包可以让开发者将 RTOS 用于任何想要的目标设备。RTOS 最常用的一种扩展是 AT 设备包,它包含各种不同 AT 设备(例如调制解调器)的移植文件和示例代码。

在超过 62,000 次下载中(截止至撰写本文时),最流行的 RTOS 扩展之一是 AT 设备包,其中包括用于不同 AT 设备的移植文件和示例代码。

关于 AT 命令

起初,AT 命令是一个协议,用于控制拨号调制解调器。随着调制解调器技术发展到较高的带宽,它仍然可以用作轻量级而高效的设备控制协议,主流的移动电话厂商也联手开发了一系列 AT 命令,用于控制移动电话上的 GSM 模块。

如今,AT 命令仍然在网络通信领域具有通用性,很多设备,例如 WiFi、蓝牙、4G,都支持 AT 命令。

如果你正在创建用于边缘计算输入、监控或物联网(IoT)的专用设备,则你可能接触到一些 RTOS 支持的 AT 设备,包括 ESP8266、ESP32、M26、MC20、RW007、MW31、SIM800C、W60X、SIM76XX、A9/A9G、BC26、AIR720、ME3616、M 6315、BC28 和 EC200X。

RT-Thread 包含套接字抽象层(SAL)组件,SAL 实现了多种网络协议和接口的抽象,为上层提供了一系列标准的 BSD 套接字 API。SAL 进而接管了 AT 的套接字接口,所以开发者只需要考虑网络应用层提供的网络接口。

这个软件包实现了设备(包括上述设备)上的 AT 套接字功能,支持通过标准套接字接口以 AT 命令的形式通信。RT-Thread 编程指南 中就有关于这些功能的详细介绍。

at\_device 软件包是在 LGPLv2.1 许可证下分发的,借助 RT-Thread Env 工具 可以方便地获取到。该工具包含一个配置器和一个包管理器,它们分别用于配置内核和组件功能,可以用于定制组件并管理在线包。有了这些工具,开发者可以像搭积木一样构建系统。

获取 AT 设备包

为了使用配置了 RTOS 的 AT 设备,你必须启用 AT 组件库和 AT 套接字功能,需要:

  • RT\_Thread 4.0.2+
  • RT\_Thread AT 组件 1.3.0+
  • RT\_Thread SAL 组件
  • RT-Thread netdev 组件

AT 设备包已经针对多种版本进行了相应的更新。版本不同,配置选项也相应地不同,因此必须针对相应的系统版本进行适配。目前最常用的 AT 设备包版本有:

  • V1.2.0: 针对低于 V3.1.3 的 RT-Thread,V1.0.0 的 AT 组件
  • V1.3.0: 针对低于 V3.1.3 的 RT-Thread,V1.1.0 的 AT 组件
  • V1.4.0: 针对低于 V3.1.3 或等于 V4.0.0 的 RT-Thread,V1.2.0 的 AT 组件
  • V1.5.0: 针对低于 V3.1.3 或等于 V4.0.0 的 RT-Thread,V1.2.0 的 AT 组件
  • V1.6.0: 针对低于 V3.1.3 或等于 V4.0.1 的 RT-Thread,V1.2.0 的 AT 组件
  • V2.0.0/V2.0.1: 针对高于 V3.1.3 的 RT-Thread,V1.3.0 的 AT 组件
  • 最新版: 针对高于 V3.1.3 的 RT-Thread,V1.3.0 的 AT 组件

获取正确的版本的过程主要是在生成菜单时自动完成的。它基于现有的系统环境提供最合适的 AT 设备包。

正如前文提到的,不同的版本需要不同的配置选项。例如,

RT-Thread online packages  --->
     IoT - internet of things  --->
        -*- AT DEVICE: RT-Thread AT component porting or samples for different device  
        [ ]   Enable at device init by thread
              AT socket device modules (Not selected, please select)  --->    
              Version (V1.6.0)  --->

按线程启用 AT 设备初始化的选项决定了配置是否创建一个单独的线程来初始化设备网络。

2.x 版本支持同时启用多个 AT 设备:

RT-Thread online packages  --->
     IoT - internet of things  --->
        -*- AT DEVICE: RT-Thread AT component porting or samples for different device
        [*]   Quectel M26/MC20  --->
          [*]   Enable initialize by thread
          [*]   Enable sample
          (-1)    Power pin
          (-1)    Power status pin
          (uart3) AT client device name
          (512)   The maximum length of receive line buffer
        [ ]   Quectel EC20  --->
        [ ]   Espressif ESP32  --->
        [*]   Espressif ESP8266  --->
          [*]   Enable initialize by thread
          [*]   Enable sample
          (realthread) WIFI ssid
          (12345678) WIFI password
          (uart2) AT client device name
          (512)   The maximum length of receive line buffer
        [ ]   Realthread RW007  --->
        [ ]   SIMCom SIM800C  --->
        [ ]   SIMCom SIM76XX  --->
        [ ]   Notion MW31  --->
        [ ]   WinnerMicro W60X  --->
        [ ]   AiThink A9/A9G  --->
        [ ]   Quectel BC26  --->
        [ ]   Luat air720  --->
        [ ]   GOSUNCN ME3616  --->
        [ ]   ChinaMobile M6315  --->
        [ ]   Quectel BC28  --->
        [ ]   Quectel ec200x  --->
        Version (latest)  --->

这个版本包含了很多其他选项,其中也有启用示例代码的选项,这对初学者或使用不熟悉的设备的开发者很有帮助。

你也可以设置相应选项,选择你想用来给你的组件供电的针脚、指示电源状态的针脚、样本设备使用的串行设备的名称,以及样本设备接收数据的最大长度。在合适的设备上,你也可以设置 SSID 和密码。

简而言之,控制选项是够用的。

  • V2.x.x 版本支持同时启用多个 AT 设备,欲查看启用的设备信息,在 finsh shell 中执行 ifocnfig 命令即可。
  • V2.X.X 版本需要设备在使用前先注册;注册可以在样例目录中进行,或在应用层以自定义方式进行。
  • 针脚选项,例如电源针脚和电源状态针脚是按照设备的硬件连接来配置的。如果硬件的开启功能不可用,它们就会被设置为 -1
  • 一台AT 设备应当对应一个序列名称,每台设备的 AT 客户端名称应当是不同的。

AT 组件配置选项

当选择了 AT 组件包,启用了设备支持,AT 组件的客户端功能也就默认选择完成了。对 AT 组件来说,这就意味着有更多的选项要设置:

RT-Thread Components  --->
    Network  --->
        AT commands  --->
    [ ]   Enable debug log output
    [ ]   Enable AT commands server 
    -*-   Enable AT commands client
    (1)     The maximum number of supported clients
    -*-     Enable BSD Socket API support by AT commnads
    [*]     Enable CLI(Command-Line Interface) for AT commands
    [ ]     Enable print RAW format AT command communication data
    (128)   The maximum length of AT Commonds buffer

与 AT 设备包有关的配置选项有:

  • 支持的客户端最大个数:选择 AT 设备包中的多台设备时,需要将该选项配置为对应的设备台数;
  • 通过 AT 命令启用 BSD 套接字 API 功能:当选择 AT 设备包时默认选择该选项。
  • AT 命令的最大长度:AT 命令可发送的数据的最大长度

一切皆有可能

当你开始进行嵌入式系统编程,你会很快意识到,你可以创造自己想象得到得任何东西。RTOS 旨在帮助你实现它,它的那些功能包为你提供了良好的开端。现在,设备的互联也是可期待的。边缘的物联网技术必须能够通过各种协议进行通信,而 AT 协议是关键。


via: https://opensource.com/article/21/3/rtos-embedded-development

作者:Alan Smithee 选题:lkxed 译者:cool-summer-021 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

用这个方便的捕鼠器比喻来理解编译代码。

源代码必须要经过编译才能够运行程序,而对于开源软件,每个人都可以获取源代码。无论你是自己编写了代码,想要编译和运行它,还是下载了某人的项目来尝试它,了解如何通过 编译器 处理源代码,以及编译器如何处理这些代码,这都很有用。

创建一个更好的捕鼠器

一般情况我们不会将一个捕鼠器比作电脑,但不管你信不信,它确实与你正在使用的设备(手机或电脑)的 CPU 有一些相似之处。经典的捕鼠器(我说的不是 ?)有两种状态:打开或者释放。你可以认为 打开 是将捕鼠器设置好准备捕获老鼠,以及 释放 是捕鼠器被老鼠触发。某种意义上来说,捕鼠器就像是一台有鼠标的电脑。你可以想象一下这个代码,用一种虚构的语言来描述这个过程:

if mousetrap == 0 then
  There's a mouse!
else
  There's no mouse yet.
end

换句话说,你可以基于捕鼠器的状态发现是否有老鼠(数据)。当然,捕鼠器不是万无一失的,有可能有一只老鼠在捕鼠器旁边,由于老鼠还没有触发捕鼠器,所以它的状态还是 打开 的。因此该程序可以进行改进,这都是非常典型的。

开关

总的来说,捕鼠器就是一个开关。你会在家里使用开关打开灯。可以从开关中获得许多信息。比如,人们会从你家灯的状态了解到你是否在家。

你可以根据邻居家灯的状态来改变行为。如果邻居家所有的灯都熄灭了,那么请关掉你大声的音乐,因为人们可能已经上床睡觉了。

CPU 也使用这样的逻辑,只不过乘以几个数量级,缩小到了微观级别。当 CPU 在特定寄存器上接收到电信号时,可以触发其他一些寄存器,然后触发另一个,以此类推。如果这些寄存器有特定的意义,那么就可以通信。也许激活同一主板上某处的芯片,或者使 LED 亮起,或者改变屏幕上的像素颜色。

种瓜得瓜,种豆得豆。如果你真的想在多个位置而不是仅限于一处发现老鼠,但是你只有一个捕鼠器,那你应该开发一个应用才行。使用网络摄像头和一些基本的图像识别软件,你可以建立空厨房的模型,然后扫描变化。当老鼠进入厨房,在原先没有老鼠的图像上会有像素的变化。记录下这些数据,如果有无人机可以追踪老鼠并捕获会更好,这样就可以将老鼠赶出厨房了。这时,你通过打开和关闭信号的魔法,创造了一个更好的捕鼠器。

编译器

代码编译器将人们可阅读的代码转换成 CPU 可以理解的机器语言。这是非常复杂的过程,因为 CPU 非常复杂(甚至比捕鼠器更加复杂),同时因为该过程比严格“需要”的更加灵活。并不是所有的编译器都很灵活。有一些编译器只有一个目标,它们只会处理特定格式的代码文件,处理过程也因此而简单明了。

幸运的是,现代的通用编译器并不简单。它们允许你编写不同语言的代码,也允许你用不同的方式链接库文件,并且可以生成运行在不同架构上的文件。GNU 编译器集合(GCC)的 gcc 编译器 --help 会输出超过 50 行的选项,LLVM 的 clang 编译器的 --help 输出超过 1000 行。GCC 指导手册的字数超过 10 万。

当你在编译代码时会有很多选项。

当然,大多数人并不需要知道所有的选项。我从未读过 GCC 的手册页,因为它们是针对 Objective-C、Fortran 以及我从未听说过的芯片架构的。不过我重视它将代码编译为不同的架构 —— 64 位或者 32 位 —— 的能力,以及在其他行业已经落后的计算机上运行开源软件的能力。

编译生命周期

同样重要的是,理解编译代码的不同阶段。这是一个简单的 C 语言程序的生命周期:

  1. 带有宏定义的 C 源代码 .c 文件,用 cpp 预处理为 .i 文件。
  2. 扩展了宏定义的 C 源代码 .i 文件,会被 gcc 转译成 .s 文件。
  3. 以汇编语言写的文本文件 .s 文件被汇编为目标 .o 文件。
  4. 带有 CPU 指令的二进制目标代码,以及其他目标文件和库 *.o 文件,以内存区域无关的偏移量,使用 ld 链接以生成可执行文件。
  5. 最终的二进制文件要么包含所有需要的目标,要么设置以动态链接库 *.so 文件加载。

你可以试试这个简单示例(可能需要对库路径做一些调整):

$ cat << EOF >> hello.c
 #include
 int main(void)
 { printf("hello world\n");
   return 0; }
   EOF
$ cpp hello.c > hello.i
$ gcc -S hello.i
$ as -o hello.o hello.s
$ ld -static -o hello \
  -L/usr/lib64/gcc/x86_64-slackware-linux/5.5.0/ \
  /usr/lib64/crt1.o /usr/lib64/crti.o hello.o \
  /usr/lib64/crtn.o  --start-group -lc -lgcc \
  -lgcc_eh --end-group
$ ./hello
hello world

可获得的知识

计算机已经变得非常强大,并且用户友好。请不要走向这两种可能的极端中的任何一种:计算机不像捕鼠器和电灯开关那么简单,但它们也不是无法理解的。你可以了解编译代码、如何链接以及针对不同架构进行编译。一旦你知道了,你就可以更好地调试代码。你可以理解你下载的代码,甚至可以修复其中的一两个错误。同时从理论上来讲,你可以建造一个更好的捕鼠器,或者用捕鼠器造一个 CPU。由你决定。


via: https://opensource.com/article/22/10/compiling-code

作者:Alan Smithee 选题:lkxed 译者:Donkey-Hao 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

在 Windows 上设置你的路径,这样你就可以使用开源的命令。

当你在操作系统上启动应用程序时,操作系统需要使用某些代码库和实用程序来运行该应用程序。你的操作系统知道如何找到这些库和实用程序,因为它有一个 系统路径,这是一个通往许多应用程序需要的共同共享数据的地图。所有操作系统都有这一点,但用户通常不会意识到这一点,因为他们通常不需要在意它。然而,当你需要编程或使用特殊的网络实用程序或命令时,你可能需要关心你自己的 PATH 变量配置。

PATH 变量使你可以将命令保存到一致的位置,并使用命令提示符或更强大(而开源的)Powershell 从系统上的任何位置调用它们。

例如,假设你想安装开源应用程序 pscp.exe,它是 Windows 上著名的 PuTTY OpenSSH 客户端的命令行界面。你可以将它下载到你的硬盘,但是你的命令行如何知道它的存在呢?其实一开始,它并不知道:

PS> pscp
 pscp: 命令 “pscp” 不能被识别为 cmdlet、脚本文件或可操作程序的名称。
 检查名称的拼写,或者如果包含了路径,则检查路径是否正确,然后再试一次。

如果你正在使用一个开源命令行,例如 Powershell 或 Cmder,那么你将得到一个有用的错误提示,提示这可能是你的路径有问题(或缺少路径)。下面是解决这个问题的方法。

设置 PATH

首先,在桌面上创建一个名为 App 的文件夹。

接下来,右键单击屏幕左下角的 Windows 菜单,然后选择 “ 系统 System ”。

Image of the Windows menu system.

在弹出的 “ 系统 System ” 窗口中,单击窗口左侧的 “ 高级系统设置 Advanced system settings ” 链接。

在出现的 “ 系统属性 System properties ” 窗口中,单击窗口底部的 “ 环境变量 Environment variables ” 按钮。

Image Windows system enviroment variables.

在 “ 环境变量 Environment variables ” 窗口中,单击 “ 用户变量 User variables ” 面板下的 “ 新建 New ” 按钮。

Image of new Windows enviroment variables.

在弹出的对话框中,为 “ 变量名 Variable name ” 字段输入 PATH,为 “ 变量值 Variable value ” 字段输入 %USERPROFILE\Desktop\App 。单击 “ 确定 OK ” 按钮保存更改。

Image of Windows path set.

Desktop/Apps 中放置你想从命令提示符中访问的命令和应用程序,Powershell、Cmder 甚至 Cmd 都能找到它们。

PS> pscp –version
 pscp: Release 0.XY
 Build platform: 64-bit x86 Windows
 PS>

自动设置路径

许多应用程序会在安装过程中自动添加到系统路径中。然而,并不是所有的程序都如此,要么是因为你在安装过程中遗漏了一个复选框,要么是因为应用程序开发人员希望你自己添加它。当自动路径失败时,你现在知道如何自己设置路径。

(图像来自:Alan Smithee, CC BY-SA 4.0)


via: https://opensource.com/article/22/10/set-path-powershell

作者:Alan Smithee 选题:lkxed 译者:qfzy1222 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

在开始编写应用之前,为手机、物联网设备和边缘计算定义无线更新计划。

过去对系统的更新相对简单。当开发人员需要修改他们已经分发给公众的东西时,会发布一个更新程序供人们运行。用户将运行更新程序,允许用新文件替换旧文件并添加新文件。然而,即使有了这些“相对简单”的更新,也有一个问题。当用户安装好的系统处于意外状态时会发生什么?升级中断时会发生什么?当各种设备都在线时,这些问题同样重要,有时需要重要的安全更新。今天的许多更新都是通过无线、 空中下载技术 over-the-air (OTA)的方式提供的,连接不良、信号突然丢失或断电的可能性可能会对应该是次要更新的内容造成灾难性的影响。这些是你在计划提供 OTA 更新时需要考虑的三大策略。

1、验证

TCP 协议内置了很多验证功能,因此当你 向设备发送数据包 时,通常可以确信每个数据包都已完好无损地收到。但是,TCP 无法报告它不知道的错误,因此由你来验证以下内容:

  • 你是否已发送更新所需的所有文件?设备无法接收没有发送的内容。
  • 收到的文件和你发送的文件一样吗?至少,检查 SHA 和以验证文件完整性。
  • 如果可能,请使用 数字签名 确保文件来自受信任的来源。
  • 在允许更新开始之前,你必须验证设备能够应用更新。在提交更新之前检查权限和电池状态,并确保你的更新过程覆盖任何意外的用户事件,例如计划的重新启动或休眠。
  • 最后,你必须验证声称已成功完成的更新是否已实际完成。在将更新正式标记为系统已完成之前,请检查目标设备上的文件位置和完整性。

2、回退和故障状态

更新的最坏情况是设备处于损坏状态,以至于它甚至不能继续被中止的更新。在这种情况下,更新程序文件存在于目标设备上,但该过程已被中断。这可能会使设备处于未知状态,其中一些文件已被更新版本替换,而其他文件尚未被替换。在最坏的情况下,已更新的文件与尚未更新的文件不兼容,因此设备无法按预期运行。

有一些策略可以解决这个问题。初始更新步骤可能是安装专用于完成更新的特殊引导镜像或环境,并在系统上设置“标志”以确认更新正在进行中。这样可以确保即使设备在更新过程中突然断电,更新过程也会在下次启动时重新启动。仅在验证更新后才删除表示更新成功的标志。

根据目标设备的安全策略和你要更新的内容,特殊的引导镜像可能不可行或不需要。不过,原理还是一样的。当启动后,更新必须建立一个环境,在这个环境中,待处理的更新是解决问题之前的唯一途径

但是,在更新被授予启动权限之前,用户(如果有的话)应该能够延迟或忽略更新。

3、附加更新

在许多边缘和物联网设备中,目标设备的底层是不可变的。更新只会添加到系统的已知状态。 Fedora Silverblue 之类的项目正在证明这种模式可以在许多领域发挥作用,因此这种奢侈的做法可能会变得司空见惯。不过,在那之前,成功应用更新的一部分是了解你将要影响的环境。

不过,你不需要不可变的核心来应用附加更新。你可以构建一个使用相同概念的系统,将更新作为添加库或包的一种方式,而无需修改旧版本。作为此类更新的最后一步,具有更新路径的可执行文件是你所做的唯一实际修订。

OTA 更新

世界越来越无线化。对于手机、物联网设备和 边缘计算,OTA 更新通常是唯一的选择。实施 OTA 更新策略需要仔细规划并仔细考虑不可能的情况。你最了解你的目标设备,因此请在开始编码之前规划好你的更新架构。


via: https://opensource.com/article/22/9/plan-ota-updates-edge

作者:Alan Smithee 选题:lkxed 译者:geekpi 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出