2016年8月

Python 3 的标准库中没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto 和 cryptography 上。我们将学习如何使用这两个库,来加密和解密字符串。

哈希

如果需要用到安全哈希算法或是消息摘要算法,那么你可以使用标准库中的 hashlib 模块。这个模块包含了符合 FIPS(美国联邦信息处理标准)的安全哈希算法,包括 SHA1,SHA224,SHA256,SHA384,SHA512 以及 RSA 的 MD5 算法。Python 也支持 adler32 以及 crc32 哈希函数,不过它们在 zlib 模块中。

哈希的一个最常见的用法是,存储密码的哈希值而非密码本身。当然了,使用的哈希函数需要稳健一点,否则容易被破解。另一个常见的用法是,计算一个文件的哈希值,然后将这个文件和它的哈希值分别发送。接收到文件的人可以计算文件的哈希值,检验是否与接受到的哈希值相符。如果两者相符,就说明文件在传送的过程中未经篡改。

让我们试着创建一个 md5 哈希:

>>> import hashlib
>>> md5 = hashlib.md5()
>>> md5.update('Python rocks!')
Traceback (most recent call last):
  File "<pyshell#5>", line 1, in <module>
    md5.update('Python rocks!')
TypeError: Unicode-objects must be encoded before hashing
>>> md5.update(b'Python rocks!')
>>> md5.digest()
b'\x14\x82\xec\x1b#d\xf6N}\x16*+[\x16\xf4w'

让我们花点时间一行一行来讲解。首先,我们导入 hashlib ,然后创建一个 md5 哈希对象的实例。接着,我们向这个实例中添加一个字符串后,却得到了报错信息。原来,计算 md5 哈希时,需要使用字节形式的字符串而非普通字符串。正确添加字符串后,我们调用它的 digest 函数来得到哈希值。如果你想要十六进制的哈希值,也可以用以下方法:

>>> md5.hexdigest()
'1482ec1b2364f64e7d162a2b5b16f477'

实际上,有一种精简的方法来创建哈希,下面我们看一下用这种方法创建一个 sha1 哈希:

>>> sha = hashlib.sha1(b'Hello Python').hexdigest()
>>> sha
'422fbfbc67fe17c86642c5eaaa48f8b670cbed1b'

可以看到,我们可以同时创建一个哈希实例并且调用其 digest 函数。然后,我们打印出这个哈希值看一下。这里我使用 sha1 哈希函数作为例子,但它不是特别安全,读者可以随意尝试其他的哈希函数。

密钥导出

Python 的标准库对密钥导出支持较弱。实际上,hashlib 函数库提供的唯一方法就是 pbkdf2\_hmac 函数。它是 PKCS#5 的基于口令的第二个密钥导出函数,并使用 HMAC 作为伪随机函数。因为它支持“ 加盐 salt ”和迭代操作,你可以使用类似的方法来哈希你的密码。例如,如果你打算使用 SHA-256 加密方法,你将需要至少 16 个字节的“盐”,以及最少 100000 次的迭代操作。

简单来说,“盐”就是随机的数据,被用来加入到哈希的过程中,以加大破解的难度。这基本可以保护你的密码免受字典和 彩虹表 rainbow table 的攻击。

让我们看一个简单的例子:

>>> import binascii
>>> dk = hashlib.pbkdf2_hmac(hash_name='sha256',
        password=b'bad_password34', 
        salt=b'bad_salt', 
        iterations=100000)
>>> binascii.hexlify(dk)
b'6e97bad21f6200f9087036a71e7ca9fa01a59e1d697f7e0284cd7f9b897d7c02'

这里,我们用 SHA256 对一个密码进行哈希,使用了一个糟糕的盐,但经过了 100000 次迭代操作。当然,SHA 实际上并不被推荐用来创建密码的密钥。你应该使用类似 scrypt 的算法来替代。另一个不错的选择是使用一个叫 bcrypt 的第三方库,它是被专门设计出来哈希密码的。

PyCryptodome

PyCrypto 可能是 Python 中密码学方面最有名的第三方软件包。可惜的是,它的开发工作于 2012 年就已停止。其他人还在继续发布最新版本的 PyCrypto,如果你不介意使用第三方的二进制包,仍可以取得 Python 3.5 的相应版本。比如,我在 Github (https://github.com/sfbahr/PyCrypto-Wheels) 上找到了对应 Python 3.5 的 PyCrypto 二进制包。

幸运的是,有一个该项目的分支 PyCrytodome 取代了 PyCrypto 。为了在 Linux 上安装它,你可以使用以下 pip 命令:

pip install pycryptodome

在 Windows 系统上安装则稍有不同:

pip install pycryptodomex

如果你遇到了问题,可能是因为你没有安装正确的依赖包(LCTT 译注:如 python-devel),或者你的 Windows 系统需要一个编译器。如果你需要安装上的帮助或技术支持,可以访问 PyCryptodome 的网站

还值得注意的是,PyCryptodome 在 PyCrypto 最后版本的基础上有很多改进。非常值得去访问它们的主页,看看有什么新的特性。

加密字符串

访问了他们的主页之后,我们可以看一些例子。在第一个例子中,我们将使用 DES 算法来加密一个字符串:

>>> from Crypto.Cipher import DES
>>> key = 'abcdefgh'
>>> def pad(text):
        while len(text) % 8 != 0:
            text += ' '
        return text
>>> des = DES.new(key, DES.MODE_ECB)
>>> text = 'Python rocks!'
>>> padded_text = pad(text)
>>> encrypted_text = des.encrypt(text)
Traceback (most recent call last):
  File "<pyshell#35>", line 1, in <module>
    encrypted_text = des.encrypt(text)
  File "C:\Programs\Python\Python35-32\lib\site-packages\Crypto\Cipher\blockalgo.py", line 244, in encrypt
    return self._cipher.encrypt(plaintext)
ValueError: Input strings must be a multiple of 8 in length
>>> encrypted_text = des.encrypt(padded_text)
>>> encrypted_text
b'>\xfc\x1f\x16x\x87\xb2\x93\x0e\xfcH\x02\xd59VQ'

这段代码稍有些复杂,让我们一点点来看。首先需要注意的是,DES 加密使用的密钥长度为 8 个字节,这也是我们将密钥变量设置为 8 个字符的原因。而我们需要加密的字符串的长度必须是 8 的倍数,所以我们创建了一个名为 pad 的函数,来给一个字符串末尾填充空格,直到它的长度是 8 的倍数。然后,我们创建了一个 DES 的实例,以及我们需要加密的文本。我们还创建了一个经过填充处理的文本。我们尝试着对未经填充处理的文本进行加密,啊欧,报了一个 ValueError 错误!我们需要对经过填充处理的文本进行加密,然后得到加密的字符串。(LCTT 译注:encrypt 函数的参数应为 byte 类型字符串,代码为:encrypted_text = des.encrypt(padded_text.encode('utf-8'))

知道了如何加密,还要知道如何解密:

>>> des.decrypt(encrypted_text)
b'Python rocks!   '

幸运的是,解密非常容易,我们只需要调用 des 对象的 decrypt 方法就可以得到我们原来的 byte 类型字符串了。下一个任务是学习如何用 RSA 算法加密和解密一个文件。首先,我们需要创建一些 RSA 密钥。

创建 RSA 密钥

如果你希望使用 RSA 算法加密数据,那么你需要拥有访问 RAS 公钥和私钥的权限,否则你需要生成一组自己的密钥对。在这个例子中,我们将生成自己的密钥对。创建 RSA 密钥非常容易,所以我们将在 Python 解释器中完成。

>>> from Crypto.PublicKey import RSA
>>> code = 'nooneknows'
>>> key = RSA.generate(2048)
>>> encrypted_key = key.exportKey(passphrase=code, pkcs=8, 
        protection="scryptAndAES128-CBC")
>>> with open('/path_to_private_key/my_private_rsa_key.bin', 'wb') as f:
        f.write(encrypted_key)
>>> with open('/path_to_public_key/my_rsa_public.pem', 'wb') as f:
        f.write(key.publickey().exportKey())

首先我们从 Crypto.PublicKey 包中导入 RSA,然后创建一个傻傻的密码。接着我们生成 2048 位的 RSA 密钥。现在我们到了关键的部分。为了生成私钥,我们需要调用 RSA 密钥实例的 exportKey 方法,然后传入密码,使用的 PKCS 标准,以及加密方案这三个参数。之后,我们把私钥写入磁盘的文件中。

接下来,我们通过 RSA 密钥实例的 publickey 方法创建我们的公钥。我们使用方法链调用 publickey 和 exportKey 方法生成公钥,同样将它写入磁盘上的文件。

加密文件

有了私钥和公钥之后,我们就可以加密一些数据,并写入文件了。这里有个比较标准的例子:

from Crypto.PublicKey import RSA
from Crypto.Random import get_random_bytes
from Crypto.Cipher import AES, PKCS1_OAEP

with open('/path/to/encrypted_data.bin', 'wb') as out_file:
    recipient_key = RSA.import_key(
        open('/path_to_public_key/my_rsa_public.pem').read())
    session_key = get_random_bytes(16)

    cipher_rsa = PKCS1_OAEP.new(recipient_key)
    out_file.write(cipher_rsa.encrypt(session_key))

    cipher_aes = AES.new(session_key, AES.MODE_EAX)
    data = b'blah blah blah Python blah blah'
    ciphertext, tag = cipher_aes.encrypt_and_digest(data)

    out_file.write(cipher_aes.nonce)
    out_file.write(tag)
    out_file.write(ciphertext)

代码的前三行导入 PyCryptodome 包。然后我们打开一个文件用于写入数据。接着我们导入公钥赋给一个变量,创建一个 16 字节的会话密钥。在这个例子中,我们将使用混合加密方法,即 PKCS#1 OAEP ,也就是最优非对称加密填充。这允许我们向文件中写入任意长度的数据。接着我们创建 AES 加密,要加密的数据,然后加密数据。我们将得到加密的文本和消息认证码。最后,我们将随机数,消息认证码和加密的文本写入文件。

顺便提一下,随机数通常是真随机或伪随机数,只是用来进行密码通信的。对于 AES 加密,其密钥长度最少是 16 个字节。随意用一个你喜欢的编辑器试着打开这个被加密的文件,你应该只能看到乱码。

现在让我们学习如何解密我们的数据。

from Crypto.PublicKey import RSA
from Crypto.Cipher import AES, PKCS1_OAEP

code = 'nooneknows'

with open('/path/to/encrypted_data.bin', 'rb') as fobj:
    private_key = RSA.import_key(
        open('/path_to_private_key/my_rsa_key.pem').read(),
        passphrase=code)

    enc_session_key, nonce, tag, ciphertext = [ fobj.read(x) 
                                                for x in (private_key.size_in_bytes(), 
                                                16, 16, -1) ]

    cipher_rsa = PKCS1_OAEP.new(private_key)
    session_key = cipher_rsa.decrypt(enc_session_key)

    cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce)
    data = cipher_aes.decrypt_and_verify(ciphertext, tag)

print(data)

如果你认真看了上一个例子,这段代码应该很容易解析。在这里,我们先以二进制模式读取我们的加密文件,然后导入私钥。注意,当你导入私钥时,需要提供一个密码,否则会出现错误。然后,我们文件中读取数据,首先是加密的会话密钥,然后是 16 字节的随机数和 16 字节的消息认证码,最后是剩下的加密的数据。

接下来我们需要解密出会话密钥,重新创建 AES 密钥,然后解密出数据。

你还可以用 PyCryptodome 库做更多的事。不过我们要接着讨论在 Python 中还可以用什么来满足我们加密解密的需求。

cryptography 包

cryptography 的目标是成为“ 人类易于使用的密码学包 cryptography for humans ”,就像 requests 是“ 人类易于使用的 HTTP 库 HTTP for Humans ”一样。这个想法使你能够创建简单安全、易于使用的加密方案。如果有需要的话,你也可以使用一些底层的密码学基元,但这也需要你知道更多的细节,否则创建的东西将是不安全的。

如果你使用的 Python 版本是 3.5, 你可以使用 pip 安装,如下:

pip install cryptography

你会看到 cryptography 包还安装了一些依赖包(LCTT 译注:如 libopenssl-devel)。如果安装都顺利,我们就可以试着加密一些文本了。让我们使用 Fernet 对称加密算法,它保证了你加密的任何信息在不知道密码的情况下不能被篡改或读取。Fernet 还通过 MultiFernet 支持密钥轮换。下面让我们看一个简单的例子:

>>> from cryptography.fernet import Fernet
>>> cipher_key = Fernet.generate_key()
>>> cipher_key
b'APM1JDVgT8WDGOWBgQv6EIhvxl4vDYvUnVdg-Vjdt0o='
>>> cipher = Fernet(cipher_key)
>>> text = b'My super secret message'
>>> encrypted_text = cipher.encrypt(text)
>>> encrypted_text
(b'gAAAAABXOnV86aeUGADA6mTe9xEL92y_m0_TlC9vcqaF6NzHqRKkjEqh4d21PInEP3C9HuiUkS9f'
 b'6bdHsSlRiCNWbSkPuRd_62zfEv3eaZjJvLAm3omnya8=')
>>> decrypted_text = cipher.decrypt(encrypted_text)
>>> decrypted_text
b'My super secret message'

首先我们需要导入 Fernet,然后生成一个密钥。我们输出密钥看看它是什么样儿。如你所见,它是一个随机的字节串。如果你愿意的话,可以试着多运行 generate\_key 方法几次,生成的密钥会是不同的。然后我们使用这个密钥生成 Fernet 密码实例。

现在我们有了用来加密和解密消息的密码。下一步是创建一个需要加密的消息,然后使用 encrypt 方法对它加密。我打印出加密的文本,然后你可以看到你再也读不懂它了。为了解密出我们的秘密消息,我们只需调用 decrypt 方法,并传入加密的文本作为参数。结果就是我们得到了消息字节串形式的纯文本。

小结

这一章仅仅浅显地介绍了 PyCryptodome 和 cryptography 这两个包的使用。不过这也确实给了你一个关于如何加密解密字符串和文件的简述。请务必阅读文档,做做实验,看看还能做些什么!


相关阅读


via: http://www.blog.pythonlibrary.org/2016/05/18/python-3-an-intro-to-encryption/

作者:Mike 译者:Cathon 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

今日关注

Lumina的开发者 Ken Moore 说:“经过历时四年的开发,我现在非常高兴的宣布Lumina桌面环境的第一个正式版本发布,这一版本是基于对Lumina的最初的一个想法的完美实现——一个用户可以按照自己的喜好来进行配置的简单的桌面环境”。
Lumina 1.0拥有一个完全可定制的用户界面,开箱即用的多显示器配置,任何应用都可以通过快捷键调用“favorites”系统,来查找并启动最长使用的app。
在Lumina 1.0 中,系统管理员可以只通过一个配置文件就能够定制用户的初始化设置。这是一个轻量级的桌面环境,即使在系统资源吃紧的情况下,Lumina也不会蚕食更多的资源。另外,Lumina可以很容易的移植到其他的基于BSD或者GNU/Linux的操作系统上,比如FreeBSD, OpenBSD, NetBSD, Dragonfly BSD, TrueOS, Debian GNU/Linux, Gentoo, kFreeBSD等。

图文摘要

Sparky Backup System 20160808 发布。其内置的备份工具包含了各种命令,可以帮助用户更快捷的对整个系统进行备份。SparkyLinux 用户可以使用下面的命令更新到Sparky Backup System 20160808 版本。

sudo apt-get update
sudo apt-get install sparky-backup-sys

Linux 内核 4.4.17 LTS 以及 Linux 内核 4.6.6 均已经发布。相关用户需要进行更新了。

CentOS Linux 7 和 CentOS Linux 6 操作系统的Vagrant Box 64位镜像发布。

ownCloud 是一个自行托管的开源文件同步和共享服务器。就像“行业老大” Dropbox、Google Drive、Box 和其他的同类服务一样,ownCloud 也可以让你访问自己的文件、日历、联系人和其他数据。你可以在自己设备之间同步任意数据(或部分数据)并分享给其他人。然而,ownCloud 要比其它的商业解决方案更棒,可以将 ownCloud 运行在自己的服务器而不是其它人的服务器上。

现在,让我们一起来看看在 ownCloud 上的六个创造性的应用方式。其中一些是由于 ownCloud 的开源才得以完成,而另外的则是 ownCloud 自身特有的功能。

1. 可扩展的 ownCloud “派”集群

由于 ownCloud 是开源的,你可以选择将它运行在自己的服务器中,或者从你信任的服务商那里获取空间——没必要将你的文件存储在那些大公司的服务器中,谁知他们将你的文件存储到哪里去。点击此处查看部分 ownCloud 服务商,或者下载该服务软件到你的虚拟主机中搭建自己的服务器.

拍摄: Jörn Friedrich Dreyer. CC BY-SA 4.0.

我们见过最具创意的事情就是架设香蕉派集群树莓派集群。ownCloud 的扩展性通常用于支持成千上万的用户,但有些人则将它往不同方向发展,通过将多个微型系统集群在一起,就可以创建出运行速度超快的 ownCloud。酷毙了!

2. 密码同步

为了让 ownCloud 更容易扩展,我们将它变得超级的模块化,甚至还有一个 ownCloud 应用商店。你可以在里边找到音乐和视频播放器、日历、联系人、生产力应用、游戏、 应用模板 sketching app 等等。

从近 200 多个应用中仅挑选一个是一件非常困难的事,但密码管理则是一个很独特的功能。只有不超过三个应用提供这个功能:PasswordsSecure ContainerPassman

3. 随心所欲地存储文件

外部存储可以让你将现有数据挂载到 ownCloud 上,让你通过一个界面来访问存储在 FTP、WebDAV、Amazon S3,甚至 Dropbox 和 Google Drive 的文件。

行业老大们喜欢创建自己的 “藩篱花园”,Box 的用户只能和其它的 Box 用户协作;假如你想从 Google Drive 分享你的文件,你的同伴也必须要有一个 Google 账号才可以访问的分享。通过 ownCloud 的外部存储功能,你可以轻松打破这些。

最有创意的就是把 Google Drive 和 Dropbox 添加为外部存储。这样你就可以无缝连接它们,通过一个简单的链接即可分享给其它人——并不需要账户。

4. 获取上传的文件

由于 ownCloud 是开源的,人们可以不受公司需求的制约而向它贡献感兴趣的功能。我们的贡献者总是很在意安全和隐私,所以 ownCloud 引入的通过密码保护公共链接并设置失效期限的功能要比其它人早很多。

现在,ownCloud 可以配置分享链接的读写权限了,这就是说链接的访问者可以无缝的编辑你分享给他们的文件(可以有密码保护,也可以没有),或者将文件上传到服务器前不用强制他们提供私人信息来注册服务。

对于有人想给你分享大体积的文件时,这个特性就非常有用了。相比于上传到第三方站点、然后给你发送一个连接、你再去下载文件(通常需要登录),ownCloud 仅需要上传文件到你提供的分享文件夹,你就可以马上获取到文件了。

5. 免费却又安全的存储空间

之前就强调过,我们的代码贡献者最关注的就是安全和隐私,这就是 ownCloud 中有用于加密和解密存储数据的应用的原因。

通过使用 ownCloud 将你的文件存储到 Dropbox 或者 Google Drive,则会违背夺回数据的控制权并保持数据隐私的初衷。但是加密应用则可以改变这个状况。在发送数据给这些提供商前进行数据加密,并在取回数据的时候进行解密,你的数据就会变得很安全。

6. 在你的可控范围内分享文件

作为开源项目,ownCloud 没有必要自建 “藩篱花园”。通过“ 联邦云共享 Federated Cloud Sharing ”:这个由 ownCloud 开发和发布的协议使不同的文件同步和共享服务器可以彼此之间进行通信,并能够安全地传输文件。联邦云共享本身来自一个有趣的事情:有 22 所德国大学 想要为自身的 50 万名学生建立一个庞大的云服务,但是每个大学都想控制自己学生的数据。于是乎,我们需要一个创造性的解决方案:也就是联邦云服务。该解决方案可以连接全部的大学,使得学生们可以无缝的协同工作。同时,每个大学的系统管理员保持着对自己学生创建的文件的控制权,并可采用自己的策略,如限制限额,或者限制什么人、什么文件以及如何共享。

并且,这项神奇的技术并没有限制于德国的大学之间,每个 ownCloud 用户都能在自己的用户设置中找到自己的联邦云 ID,并将之分享给同伴。

现在你明白了吧。通过这六个方式,ownCloud 就能让人们做一些特殊而独特的事。而使这一切成为可能的,就是 ownCloud 是开源的,其设计目标就是让你的数据自由。

你有其它的 ownCloud 的创意用法吗?请发表评论让我们知道。


via: https://opensource.com/life/15/12/6-creative-ways-use-owncloud

作者:Jos Poortvliet 译者:GHLandy 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

Flatpak 的开发团队宣布了 Flatpak 桌面应用框架已经可用了。 Flatpak (以前在开发时名为 xdg-app)为应用提供了捆绑为一个 Flatpak 软件包的能力,可以让应用在很多 Linux 发行版上都以轻松而一致的体验来安装和运行。将应用程序捆绑成 Flatpak 为其提供了沙盒安全环境,可以将它们与操作系统和彼此之间相互隔离。查看 Flatpak 网站上的发布公告来了解关于 Flatpak 框架技术的更多信息。

在 Fedora 中安装 Flatpak

如果用户想要运行以 Flatpak 格式打包的应用,在 Fedora 上安装是很容易的,Flatpak 格式已经可以在官方的 Fedora 23 和 Fedora 24 仓库中获得。Flatpak 网站上有在 Fedora 上安装的完整细节,同时也有如何在 Arch、 Debian、Mageia 和 Ubuntu 中安装的方法。许多的应用已经使用 Flatpak 打包构建了,这包括 LibreOffice、Inkscape 和 GIMP。

对应用开发者

如果你是一个应用开发者,Flatpak 网站也包含许多有关于使用 Flatpak 打包和分发应用程序的重要资料。这些资料中包括了使用 Flakpak SDK 构建独立的、沙盒化的 Flakpak 应用程序的信息。


via: https://fedoramagazine.org/introducing-flatpak/

作者:Ryan Lerch 译者:zky001 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

文本编辑软件在任何操作系统上都是必备的软件。我们在 Linux 上不缺乏非常现代化的编辑软件,但是它们都是基于 GUI(图形界面)的编辑软件。

正如你所了解的,Linux 真正的魅力在于命令行。当你正在用命令行工作时,你就需要一个可以在控制台窗口运行的文本编辑器。

正因为这个目的,我们准备了一个基于 Linux 命令行的文本编辑器清单。

VIM

如果你已经使用 Linux 有一段时间,那么你肯定听到过 Vim 。Vim 是一个高度可配置的、跨平台的、高效率的文本编辑器。

几乎所有的 Linux 发行版本都已经内置了 Vim ,由于其特性之丰富,它已经变得非常流行了。

Vim 用户界面

Vim 可能会让第一次使用它的人感到非常痛苦。我记得我第一次尝试使用 Vim 编辑一个文本文件时,我是非常困惑的。我不能用 Vim 输入一个字母,更有趣的是,我甚至不知道该怎么关闭它。如果你准备使用 Vim ,你需要有决心跨过一个陡峭的学习路线。

但是一旦你经历过了那些,通过梳理一些文档,记住它的命令和快捷键,你会发现这段学习经历是非常值得的。你可以将 Vim 按照你的意愿进行改造:配置一个让你看起来舒服的界面,通过使用脚本或者插件等来提高工作效率。Vim 支持格式高亮,宏记录和操作记录。

在Vim官网上,它是这样介绍的:

Vim: The power tool for everyone!

如何使用它完全取决于你。你可以仅仅使用它作为文本编辑器,或者你可以将它打造成一个完善的IDE( 集成开发环境 Integrated Development Environment )。

GNU EMACS

GNU Emacs 毫无疑问是非常强大的文本编辑器之一。如果你听说过 Vim 和 Emacs ,你应该知道这两个编辑器都拥有非常忠诚的粉丝基础,并且他们对于文本编辑器的选择非常看重。你也可以在互联网上找到大量关于他们的段子:

Vim vs Emacs

Emacs 是一个跨平台的、既有有图形界面也有命令行界面的软件。它也拥有非常多的特性,更重要的是,可扩展!

Emacs 用户界面

像 Vim一样,Emacs 也需要经历一个陡峭的学习路线。但是一旦你掌握了它,你就能完全体会到它的强大。Emacs 可以处理几乎所有类型文本文件。它的界面可以定制以适应你的工作流。它也支持宏记录和快捷键。

Emacs 独特的特性是它可以“变形”成和文本编辑器完全不同的的东西。有大量的模块可使它在不同的场景下成为不同的应用,例如:计算器、新闻阅读器、文字处理器等。你甚至都可以在 Emacs 里面玩游戏。

NANO

如果说到简易方便的软件,Nano 就是一个。不像 Vim 和 Emacs,nano 的学习曲线是平滑的。

如果你仅仅是想创建和编辑一个文本文件,不想给自己找太多挑战,Nano 估计是最适合你的了。

Nano 用户界面

Nano 可用的快捷键都在用户界面的下方展示出来了。Nano 仅仅拥有最基础的文本编辑软件的功能。

它是非常小巧的,非常适合编辑系统配置文件。对于那些不需要复杂的命令行编辑功能的人来说,Nano 是完美配备。

其它

这里还有一些我想要提及其它编辑器:

The Nice Editor (ne): 官网是这样介绍的:

如果你有足够的资料,也有使用 Emacs 的耐心或使用 Vim 的良好心态,那么 ne 可能不适合你。

基本上 ne 拥有像 Vim 和 Emacs 一样多的高级功能,包括:脚本和宏记录。但是它有更为直观的操作方式和平滑的学习路线。

你认为呢?

我知道,如果你是一个熟练的 Linux 用户,你可以会说还有很多应该被列入 “Linux 最好的命令行编辑器”清单上。因此我想跟你说,如果你还知道其他的 Linux 命令行文本编辑器,你是否愿意跟我们一同分享?


via: https://itsfoss.com/command-line-text-editors-linux/

作者:Munif Tanjim 译者:chenzhijun 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

今日关注

即将发布的 Debian Unstable 操作系统将默认采用 GCC 6 编译器以及 Binutils2.27。Debian Unstable是Debian GNU/Linux 发行版的一个滚动开发版本,目前在其软件仓库中,可以下载GCC 6.1.1, Boost 1.61 和 ICU 57 库了。

图文摘要

免费开源的跨平台 RAW 图像编辑器digiKam 5.1.0发布。这一版本除了对一些 bug 的修复之外,还增加了libraw 0.18.0库,用来读取各种数码相机拍摄出来的 RAW 图片,新的 libraw 库支持Canon 80D, Canon 1300D, Canon 1DX Mark II, Fujifilm X-Pro2, Fujifilm X70, Fujifilm X-E2S, Nikon D5, Leica M, 和 Leica X-U。Samsung Galaxy S7 的用户也可以使用 digiKam 浏览图片了。

BakAndImgCD 19.0正式发布。此版本基于4MLinux Backup Scripts 19.0,可以用来从各种Linux 操作系统、Windows 系统、Mac OSX 的文件系统进行数据备份。另外,BakAndImgCD 19.0还支持比较小众的F2FS, NILFS2, JFS, Reiser4, ReiserFS, 和 XFS文件系统。还支持从任意分区或者驱动进行写盘操作。可以下载体验了。

Claws Mail 3.14.0 发布。此版本支持通过Master Passphrase 来保存 email 帐号的密码。另外,密码的存储方法也发生了变化,所有的密码都存储到了~/.claws-mail/passwordstorerc这个独立的文件中,并采用了更强的加密算法。已经可以下载使用了。