标签 镜像 下的文章

mkosi 是一个轻量级工具,用于从发行版软件包构建镜像。本文介绍如何使用 mkosi 从 RHEL 和 RHEL 通用基础镜像 Universal Base Image (UBI)的软件包构建镜像。RHEL UBI 是 RHEL 的一个子集,可以在没有订阅的情况下免费使用。

mkosi 特性

mkosi 支持一些输出格式,但最重要的是 可发现磁盘镜像 Discoverable Disk Images (DDI)。同一个 DDI 可用于引导容器、或运行在虚拟机、抑或是复制到 U 盘以引导真实物理机,然后从 U 盘复制到磁盘以引导系统。该镜像具有标准化的布局和描述其用途的元数据。

mkosi 依赖其他工具来完成大部分工作:使用 systemd-repart 在磁盘镜像上创建分区,使用 mkfs.btrfs / mkfs.ext4 / mkfs.xfs 等创建文件系统,并使用 dnf / apt / pacman / zypper 下载和解压包。

mkosi 支持一系列发行版:Debian 和 Ubuntu、Arch Linux、openSUSE,当然还包括 Fedora、CentOS Stream 及其衍生版本,以及最近的 RHEL UBI 和 RHEL 。由于实际的“重活”是由其他工具完成的,mkosi 可以进行交叉构建。这意味着可以使用一个发行版构建各种其他发行版的镜像。唯一的要求是主机上安装了相应的工具。Fedora 有原生的 aptpacmanzypper,因此它为使用 mkosi 构建任何其他发行版提供了良好的基础。

它还有一些有趣的功能:镜像可以由非特权用户创建,或者在没有设备文件的容器中创建,特别是没有对回环设备的访问权限。它还可以在没有特权的情况下将这些镜像启动为虚拟机(使用 qemu)。

配置是声明性的,非常容易创建。使用 systemd-repart 创建磁盘分区,并使用 repart.d 配置文件定义应该如何完成此操作。

有关更多详细信息,请参见 Daan DeMeyer 在 All Systems Go 大会上的两个演讲:《systemd-repart: Building Discoverable Disk Images》 和 《mkosi: Building Bespoke Operating System Images》。

项目目标

mkosi 的一个目标是允许对软件项目进行针对不同发行版的测试。它将为一个发行版创建一个镜像(使用该发行版的软件包),然后将软件项目编译并安装到该镜像中,插入不属于软件包的额外文件。但是,首个阶段,即从软件包创建镜像的过程,本身就是有用的。这是我们将首先展示的内容。

我们 [1] 最近添加了对 RHEL 和 RHEL UBI 的支持。让我们从 RHEL UBI 开始,利用发行版软件包创建镜像。

请注意,下面的示例要求 mkosi 19,而且不适用于更早的版本。

带有 Shell 的基本 RHEL UBI 镜像

$ mkdir -p mkosi.cache
$ mkosi \
    -d rhel-ubi \
    -t directory \
    -p bash,coreutils,util-linux,systemd,rpm \
    --autologin

上面的命令指定了发行版 rhel-ubi,输出格式 directory,并请求安装软件包 bashcoreutils、…、rpmrpm 通常不需要放到镜像内部,但在这里用于内省会很有用。我们还启用了以 root 用户自动登录。

在启动构建之前,我们创建了缓存目录 mkosi.cache。当存在缓存目录时,mkosi 会自动使用它来持久化下载的 RPM 包。这将使相同软件包集合的后续调用速度更快。

然后,我们可以使用 systemd-nspawn 将此镜像作为容器启动:

$ sudo mkosi \
    -d rhel-ubi \
    -t directory \
    boot
systemd 252-14.el9_2.3 running in system mode (+PAM +AUDIT +SELINUX -APPARMOR +IMA +SMACK +SECCOMP +GCRYPT +GNUTLS +OPENSSL +ACL +BLKID +CURL +ELFUTILS -FIDO2 +IDN2 -IDN -IPTC +KMOD +LIBCRYPTSETUP +LIBFDISK +PCRE2 -PWQUALITY +P11KIT -QRENCODE +TPM2 +BZIP2 +LZ4 +XZ +ZLIB +ZSTD -BPF_FRAMEWORK +XKBCOMMON +UTMP +SYSVINIT default-hierarchy=unified)
Detected virtualization systemd-nspawn.
Detected architecture x86-64.
Detected first boot.

Red Hat Enterprise Linux 9.2 (Plow)
...
[ OK ] Created slice Slice /system/getty.
[ OK ] Created slice Slice /system/modprobe.
[ OK ] Created slice User and Session Slice.
...
[ OK ] Started User Login Management.
[ OK ] Reached target Multi-User System.

Red Hat Enterprise Linux 9.2 (Plow)
Kernel 6.5.6-300.fc39.x86_64 on an x86_64

image login: root (automatic login)

[root@image ~]# rpm -q rpm systemd
rpm-4.16.1.3-22.el9.x86_64
systemd-252-14.el9_2.3.x86_64

正如前面提到的,此镜像可以用于启动虚拟机。但在此设置下,这是不可能的 —— 我们的镜像没有内核。事实上,RHEL UBI 根本不提供内核,因此我们无法使用它进行引导(无论是在虚拟机上还是在裸机上)。

创建镜像

我一开始说是要创建镜像,但到目前为止我们只有一个目录。让我们开始实际创建一个镜像:

$ mkosi \
    -d rhel-ubi \
    -t disk \
    -p bash,coreutils,util-linux,systemd,rpm \
    --autologin

这将生成 image.raw,一个带有 GPT 分区表和单个根分区(用于本机架构)的磁盘镜像。

$ sudo systemd-dissect image.raw
Name: image.raw
Size: 301.0M
Sec. Size: 512
Arch.: x86-64

Image UUID: dcbd6499-409e-4b62-b251-e0dd15e446d5
OS Release: NAME=Red Hat Enterprise Linux
VERSION=9.2 (Plow)
ID=rhel
ID_LIKE=fedora
VERSION_ID=9.2
PLATFORM_ID=platform:el9
PRETTY_NAME=Red Hat Enterprise Linux 9.2 (Plow)
ANSI_COLOR=0;31
LOGO=fedora-logo-icon
CPE_NAME=cpe:/o:redhat:enterprise_linux:9::baseos
HOME_URL=https://www.redhat.com/
DOCUMENTATION_URL=https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9
BUG_REPORT_URL=https://bugzilla.redhat.com/
REDHAT_BUGZILLA_PRODUCT=Red Hat Enterprise Linux 9
REDHAT_BUGZILLA_PRODUCT_VERSION=9.2
REDHAT_SUPPORT_PRODUCT=Red Hat Enterprise Linux
REDHAT_SUPPORT_PRODUCT_VERSION=9.2

Use As: ✗ bootable system for UEFI
        ✓ bootable system for container
        ✗ portable service
        ✗ initrd
        ✗ sysext extension for system
        ✗ sysext extension for initrd
        ✗ sysext extension for portable service

RW DESIGNATOR PARTITION UUID PARTITION LABEL FSTYPE ARCHITECTURE VERITY GROWFS NODE PARTNO
rw root 1236e211-4729-4561-a6fc-9ef8f18b828f root-x86-64 xfs x86-64 no yes /dev/loop0p1 1

好的,我们现在有一个镜像,镜像中包含了一些来自 RHEL UBI 软件包的内容。我们如何在其上加点我们自己的东西呢?

使用自己的文件扩展镜像

有几种方法可以扩展镜像,包括从头开始编译某些东西。但在那之前,让我们做一些更简单的事情,将一个现成的文件系统注入到镜像中:

$ mkdir -p mkosi.extra/srv/www/content
$ cat >mkosi.extra/srv/www/content/index.html <<'EOF'
<h1>Hello, World!</h1>
EOF

现在,该镜像将包含 /srv/www/content/index.html

这种方法用于注入额外的配置或简单的程序。

从源代码构建

现在让我们过一遍完整流程,从源代码构建一些东西。例如,一个简单的 Meson 项目,有一个单独的 C 文件:

$ cat >hello.c <<'EOF'
#include <stdio.h>

int main(int argc, char **argv) {
    char buf[1024];

    FILE *f = fopen("/srv/www/content/index.html", "re");
    size_t n = fread(buf, 1, sizeof buf, f);

    fwrite(buf, 1, n, stdout);
    fclose(f);
    return 0;
}
EOF

$ cat >meson.build <<'EOF'
project('hello', 'c')
executable('hello', 'hello.c',
            install: true)
EOF
$ cat >mkosi.build <<'EOF'
set -ex

mkosi-as-caller rm -rf "$BUILDDIR/build"
mkosi-as-caller meson setup "$BUILDDIR/build" "$SRCDIR"
mkosi-as-caller meson compile -C "$BUILDDIR/build"
meson install -C "$BUILDDIR/build" --no-rebuild
EOF
$ chmod +x mkosi.build

总结一下:我们有一些源代码(hello.c),一个构建系统配置文件(meson.build),以及一个由 mkosi 调用的胶水脚本(mkosi.build)。对于实际的项目,也会有相同的元素,只是更加复杂。

这个脚本需要一些解释。mkosi 在创建镜像时使用用户命名空间。这允许包管理器(例如 dnf)安装由不同用户拥有的文件,即使它是由一个普通非特权用户调用的。我们使用 mkosi-as-caller 切换回调用者以进行编译。这样,在 $BUILDDIR 下编译期间创建的文件将由调用者拥有。

现在让我们使用我们的程序构建镜像。与之前的调用相比,我们需要额外的软件包:mesongcc。由于我们现在有了构建脚本,mkosi 将执行两个构建阶段:首先创建一个构建镜像,并在其中调用构建脚本,将安装产物存储在一个临时目录中,然后构建最终镜像,并将安装产物注入其中。(mkosi 设置 $DESTDIRmeson install 自动使用 $DESTDIR,因此并不需要我们明确指定。)

$ mkosi \
    -d rhel-ubi \
    -t disk \
    -p bash,coreutils,util-linux,systemd,rpm \
    --autologin \
    --build-package=meson,gcc \
    --build-dir=mkosi.builddir \
    --build-script=mkosi.build \
    -f

此时,我们有了带有自定义载荷的镜像 image.raw。我们可以启动我们新创建的可执行文件作为 shell 命令:

$ sudo mkosi -d rhel-ubi -t directory shell hello
<h1>Hello, World!</h1>

获取 RHEL 的开发者订阅

RHEL UBI 主要用作容器构建的基础层。它提供了有限的软件包(约 1500 个)。现在让我们切换到完整的 RHEL 安装。

获取 RHEL 的最简单方法是使用 开发者许可证。它提供了权限注册 16 个运行 RHEL 的物理或虚拟节点,并提供自助式支持。

首先,创建一个账户。然后,转到 管理页面 并确保启用了“用于 Red Hat 订阅管理的简化内容访问”。接下来,创建一个新的激活密钥,选择 “Red Hat 个人开发者订阅”。记下显示的组织 ID。在下面,我们将使用密钥名称和组织 ID 分别表示为 $KEY_NAME$ORGANIZATION_ID

现在,我们准备使用 RHEL 内容:

$ sudo dnf install subscription-manager
$ sudo subscription-manager register \
    --org $ORGANIZATION_ID --activationkey $KEY_NAME

使用 RHEL 构建镜像

在之前的示例中,我们通过参数开关指定了所有配置。这对于快速开发很友好,但可能在情况复杂时变得难以处理。RHEL 是一个严肃的发行版,所以让我们改为使用配置文件:

$ cat >mkosi.conf <<'EOF'
[Output]
Format=directory
Output=rhel-directory

[Distribution]
Distribution=rhel

[Content]
Packages=
bash
coreutils
util-linux
systemd
systemd-boot
systemd-udev
kernel-core

Bootable=yes
Bootloader=uki
Autologin=yes
WithDocs=no
EOF

首先,让我们检查一下一切是否正常:

$ mkosi summary

现在让我们构建镜像(呃,或者说,目录):

$ mkosi build
$ mkosi qemu
Welcome to Red Hat Enterprise Linux 9.2 (Plow)!

[ OK ] Created slice Slice /system/modprobe.
[ OK ] Reached target Initrd Root Device.
[ OK ] Reached target Initrd /usr File System.
[ OK ] Reached target Local Integrity Protected Volumes.
[ OK ] Reached target Local File Systems.
[ OK ] Reached target Path Units.
[ OK ] Reached target Remote Encrypted Volumes.
[ OK ] Reached target Remote Verity Protected Volumes.
[ OK ] Reached target Slice Units.
[ OK ] Reached target Swaps.
...
[ OK ] Listening on Journal Socket.
[ OK ] Listening on udev Control Socket.
[ OK ] Listening on udev Kernel Socket.
...
Red Hat Enterprise Linux 9.2 (Plow)
Kernel 5.14.0-284.30.1.el9_2.x86_64 on an x86_64

localhost login: root (automatic login)
[root@localhost ~]#

很好,我们将“镜像”构建为一个带有文件系统树的目录,并在虚拟机中引导了它。

在引导的虚拟机中,findmnt / 显示根文件系统是 virtiofs。这是一个虚拟文件系统,将主机的目录暴露给客户机。我们其实也可以构建一个更传统的镜像,其中包含文件系统和文件内的分区表,但“目录 + virtiofs” 对于开发来说更快且更友好。

我们刚刚引导的镜像未注册。要允许从镜像“内部”下载更新,我们必须将 yumsubscription-managerNetworkManager 添加到软件包列表,并在下载任何更新之前以与上述相同的方式调用 subscription-manager。在这之后,我们在基本仓库中就有大约 4500 个软件包可用,并且还有一些包含更多专业软件包的额外仓库。

最后

今天就是这些了。如果您有问题,可以在 Matrix 上找到我们,地址为 #mkosi:matrix.org,或者在 systemd 邮件列表 上找到我们。

(题图:MJ/a6e60316-ed03-4e23-b8b4-22332a0f5bfa)


  1. Daan DeMeyer、Lukáš Nykrýn、Michal Sekletár、Zbigiew Jędrzejewski-Szmek ↩︎

via: https://fedoramagazine.org/create-images-directly-from-rhel-and-rhel-ubi-package-using-mkosi/

作者:Zbigniew Jędrzejewski-Szmek 选题:lujun9972 译者:GlassFoxowo 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

使用 Watchtower 自动更新 Docker 容器基础镜像

对开发运维人员来说,保持 Docker 容器为最新版本是重要工作之一。手动更新 Docker 容器是一项耗时的工作。这篇文章解释了 Watchtower 是什么,如何安装它,以及在 Linux 中如何 使用 Watchtower 自动更新正在运行的 Docker 容器

Watchtower 是什么?

Watchtower 是一款自由开源的应用,用来监控运行中的 Docker 容器,并且当它发现基础镜像被更改后,可以自动的更新容器。

若 Watchtower 发现一个运行中的容器需要更新,它会以发送 SIGTERM 信号的方式,优雅的结束运行中容器的运行。

它会下载新镜像,然后以最初部署时使用的方式,重启容器。所有文件会在后台自动下载,因此不需要用户的介入。

在这份指南中,我们将会明白如何在类 Unix 系统中使用 Watchtower 自动更新正在运行的 Docker 容器。

我已经在 CentOS 和 Ubuntu 中测试了这份指南,所有的 Linux 发行版中操作过程都一样。

在 Linux 中安装 Watchtower

可以通过 Docker 镜像的方式下载 Watchtower 。因此,部署它是小事一桩。在你的 Linux 中安装 Docker 镜像,然后运行 Watchtower 立即开始监控 Docker 容器。

参考下方指导在基于 PRM 和 DEB 包管理系统中安装 Docker

安装 Docker 后,你可以使用以下命令以 root 用户身份部署 Watchtower 容器:

# docker run -d --name watchtower -v /var/run/docker.sock:/var/run/docker.sock containrrr/watchtower

如果你已经安装了 Docker 桌面版,以普通用户运行 Watchtower 容器。

$ docker run -d --name watchtower -v /var/run/docker.sock:/var/run/docker.sock containrrr/watchtower

该命令会拉取最新版的 watchtower 镜像,并运行 watchtower 容器。

输出样例:

Unable to find image 'containrrr/watchtower:latest' locally
latest: Pulling from containrrr/watchtower
1045b2f97fda: Pull complete 
35a104a262d3: Pull complete 
1a0671483169: Pull complete 
Digest: sha256:bbf9794a691b59ed2ed3089fec53844f14ada249ee5e372ff0e595b73f4e9ab3
Status: Downloaded newer image for containrrr/watchtower:latest
91c104ef0e9896e8cd5ff30d9f13e728dbfad66443830ec2ac85dde6d7d37564

Run Watchtower Docker Container

使用 Watchtower 自动更新 Docker 容器

在你的系统上,Watchtower 正在和其他容器一起运行。你可以使用一下命令查看运行中的 Docker 容器列表:

$ docker ps

输出样例:

CONTAINER ID   IMAGE                       COMMAND                  CREATED          STATUS          PORTS                                         NAMES
91c104ef0e98   containrrr/watchtower       "/watchtower"            14 minutes ago   Up 14 minutes   8080/tcp                                      watchtower
f90b462b0712   bitnami/wordpress-nginx:6   "/opt/bitnami/script…"   19 minutes ago   Up 19 minutes   0.0.0.0:80->8080/tcp, 0.0.0.0:443->8443/tcp   ostechnix-wordpress-1

正如上方输出所示,watchtower 容器正在和名为 ostechnix-wordpress-1 的容器一起运行。从现在开始,watchtower 会每隔几分钟会检查该容器。

如果 Watchtower 发现该容器的基础镜像的任何变化,它会优雅的关闭 ostechnix-wordpress-1 容器,然后使用与最初启动它时使用的相同方式,启动新的镜像。

类似的,它会自动地每隔几分钟检查所有的运行中容器,并自动更新它们。

Watchtower 如何更新多连接的容器?

在监视多连接容器时,Watchtower 十分智能。

假设我们现在运行两个容器。

$ docker ps

输出样例:

CONTAINER ID   IMAGE                       COMMAND                  CREATED          STATUS          PORTS                                         NAMES
91c104ef0e98   containrrr/watchtower       "/watchtower"            14 minutes ago   Up 14 minutes   8080/tcp                                      watchtower
f90b462b0712   bitnami/wordpress-nginx:6   "/opt/bitnami/script…"   19 minutes ago   Up 19 minutes   0.0.0.0:80->8080/tcp, 0.0.0.0:443->8443/tcp   ostechnix-wordpress-1
a895f082438a   bitnami/mariadb:10.6        "/opt/bitnami/script…"   20 minutes ago   Up 19 minutes   3306/tcp                                      ostechnix-mariadb-1

View Running Docker Containers

正如你看到的,我们正在运行 ostechnix-wordpress-1ostechnix-mariadb-1 这两个容器。ostechnix-mariadb-1 容器链接到 ostechnix-wordpress-1 容器。

如果 Watchtower 发现 ostechnix-wordpress-1 容器有个新版本,它会先关闭与之相连接的 ostechnix-mariadb-1 容器 ,然后才会关闭 ostechnix-wordpress-1 容器。

更新 ostechnix-wordpress-1 容器后,Watchtower 会以正确的顺序,且与最初启动它们时使用的相同方式,重启这两个容器,以便应用程序正确恢复。在我们的例子中,首先启动的是 ostechnix-mariadb-1 容器,然后是 ostechnix-wordpress-1 容器,以确保连接能够继续运行。

监控特定容器

默认情况下,Watchtower 将监控在它所指向的 Docker 守护进程中运行的所有 Docker 容器。

不过,你可以像下面这样,通过指定容器名称限制 Watchtower 监视特定的 Docker 容器。

$ docker run -d --name watchtower -v /var/run/docker.sock:/var/run/docker.sock containrrr/watchtower ostechnix-wordpress-1

在上方的例子中,watchtower 会忽略其他容器,只监视名为 ostechnix-wordpress-1 的容器更新情况。

如果你不指定任何参数,Watchtower 会照常监视所有运行中的 Docker 容器。

发送提示

或许你想收到容器更新的通知。你可以通过电子邮件、Slack 、MSTeams 以及 Gotify 发送通知。

下面这个例子展示了如何通过电子邮件发送通知。假设你已经设置了 SMTP 服务器。

docker run -d \
  --name watchtower \
  -v /var/run/docker.sock:/var/run/docker.sock \
  -e WATCHTOWER_NOTIFICATIONS=email \
  -e [email protected] \
  -e [email protected] \
  -e WATCHTOWER_NOTIFICATION_EMAIL_SERVER=smtp.gmail.com \
  -e WATCHTOWER_NOTIFICATION_EMAIL_SERVER_PORT=587 \
  -e [email protected] \
  -e WATCHTOWER_NOTIFICATION_EMAIL_SERVER_PASSWORD=app_password \
  -e WATCHTOWER_NOTIFICATION_EMAIL_DELAY=2 \
  containrrr/watchtower

参考下方 Watchtower Github 仓库和 Watchtower 官方主页获取更多信息:

资料


via: https://ostechnix.com/automatically-update-running-docker-containers/

作者:sk 选题:lkxed 译者:Donkey 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

容器镜像包含一个打包的应用,以及它的依赖关系,还有它在启动时运行的进程信息。

 title=

容器是当今 IT 运维的一个关键部分。 容器镜像 container image 包含了一个打包的应用,以及它的依赖关系,还有它在启动时运行的进程信息。

你可以通过提供一组特殊格式的指令来创建容器镜像,可以是提交给 注册中心 Registry ,或者是作为 Dockerfile 保存。例如,这个 Dockerfile 为 PHP Web 应用创建了一个容器:

FROM registry.access.redhat.com/ubi8/ubi:8.1

RUN yum --disableplugin=subscription-manager -y module enable php:7.3 \
  && yum --disableplugin=subscription-manager -y install httpd php \
  && yum --disableplugin=subscription-manager clean all

ADD index.php /var/www/html

RUN sed -i 's/Listen 80/Listen 8080/' /etc/httpd/conf/httpd.conf \
  && sed -i 's/listen.acl_users = apache,nginx/listen.acl_users =/' /etc/php-fpm.d/www.conf \
  && mkdir /run/php-fpm \
  && chgrp -R 0 /var/log/httpd /var/run/httpd /run/php-fpm \
  && chmod -R g=u /var/log/httpd /var/run/httpd /run/php-fpm

EXPOSE 8080
USER 1001
CMD php-fpm & httpd -D FOREGROUND

这个文件中的每条指令都会在容器镜像中增加一个 layer 。每一层只增加与下面一层的区别,然后,所有这些堆叠在一起,形成一个只读的容器镜像。

它是如何工作的?

你需要知道一些关于容器镜像的事情,按照这个顺序理解这些概念很重要:

  1. 联合文件系统
  2. 写入时复制(COW)
  3. 叠加文件系统
  4. 快照器

联合文件系统

联合文件系统 Union File System (UnionFS)内置于 Linux 内核中,它允许将一个文件系统的内容与另一个文件系统的内容合并,同时保持“物理”内容的分离。其结果是一个统一的文件系统,即使数据实际上是以分支形式组织。

这里的想法是,如果你有多个镜像有一些相同的数据,不是让这些数据再次复制过来,而是通过使用一个叫做 layer 的东西来共享。

 title=

每一层都是一个可以在多个容器中共享的文件系统,例如,httpd 基础层是 Apache 的官方镜像,可以在任何数量的容器中使用。想象一下,由于我们在所有的容器中使用相同的基础层,我们节省了多少磁盘空间。

这些镜像层总是只读的,但是当我们用这个镜像创建一个新的容器时,我们会在它上面添加一个薄的可写层。这个可写层是你创建、修改、删除或进行每个容器所需的其他修改的地方。

写时复制(COW)

当你启动一个容器时,看起来好像这个容器有自己的整个文件系统。这意味着你在系统中运行的每个容器都需要自己的文件系统副本。这岂不是要占用大量的磁盘空间,而且还要花费大量的时间让容器启动?不是的,因为每个容器都不需要它自己的文件系统副本!

容器和镜像使用 写时复制 copy-on-write (COW)机制来实现这一点。写时复制策略不是复制文件,而是将同一个数据实例分享给多个进程,并且只在一个进程需要修改或写入数据时进行复制。所有其他进程将继续使用原始数据。

Docker 对镜像和容器都使用了写时复制的机制。为了做到这一点,在旧版本中,镜像和运行中的容器之间的变化是通过 图驱动 graph driver 来跟踪的,现在则是通过 快照器 snapshotter 来跟踪。

在运行中的容器中执行任何写操作之前,要修改的文件的副本被放在容器的可写层上。这就是发生 的地方。现在你知道为什么它被称为“写时复制”了么。

这种策略既优化了镜像磁盘空间的使用,也优化了容器启动时间的性能,并与 UnionFS 一起工作。

叠加文件系统

叠加文件系统 Overlay File System 位于现有文件系统的顶部,结合了上层和下层的目录树,并将它们作为一个单一的目录来呈现。这些目录被称为 layer 。下层保持不被修改。每一层只增加与下一层的差异(计算机术语为 “diff”),这种统一的过程被称为 联合挂载 union mount

最低的目录或镜像层被称为 下层目录 lowerdir ,上面的目录被称为 上层目录 upperdir 。最后的覆盖层或统一层被称为 合并层 merged

 title=

常见的术语包括这些层的定义:

  • 基础层 Base layer :是你的文件系统的文件所在的地方。就容器镜像而言,这个层就是你的基础镜像。
  • 叠加层 Overlay layer :通常被称为 容器层 container layer ,因为对运行中的容器所做的所有改变,如添加、删除或修改文件,都会写到这个可写层。对这一层所做的所有修改都存储在下一层,是基础层和差异层的联合视图。
  • 差异层 Diff layer 包含了在叠加层所作的所有修改。如果你写的东西已经在基础层了,那么叠加文件系统就会把文件复制到差异层,并做出你想写的修改。这被称为写时复制。

快照器

通过使用层和图驱动,容器可以将其更改作为其容器文件系统的一部分来构建、管理和分发。但是使用 图驱动 graph driver 的工作真的很复杂,而且容易出错。 快照器 SnapShotter 与图驱动不同,因为它们不用了解镜像或容器。

快照器的工作方式与 Git 非常相似,比如有树的概念,并跟踪每次提交对树的改变。一个 快照 snapshot 代表一个文件系统状态。快照有父子关系,使用一组目录。可以在父级和其快照之间进行差异比较(diff),以创建一个层。

快照器提供了一个用于分配、快照和挂载抽象的分层文件系统的 API。

总结

你现在对什么是容器镜像以及它们的分层方法如何使容器可移植有了很好的认识。接下来,我将介绍容器的运行机制和内部结构。

本文基于 techbeatly 的文章,经许可后改编。


via: https://opensource.com/article/21/8/container-image

作者:Nived V 选题:lujun9972 译者:geekpi 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

这要从一次咨询的失误说起:政府组织 A 让政府组织 B 开发一个 Web 应用程序。政府机构 B 把部分工作外包给某个人。后来,项目的托管和维护被外包给一家私人公司 C。C 公司发现,之前外包的人(已经离开很久了)构建了一个自定义的 Docker 镜像,并将其成为系统构建的依赖项,但这个人没有提交原始的 Dockerfile。C 公司有合同义务管理这个 Docker 镜像,可是他们他们没有源代码。C 公司偶尔叫我进去做各种工作,所以处理一些关于这个神秘 Docker 镜像的事情就成了我的工作。

幸运的是,Docker 镜像的格式比想象的透明多了。虽然还需要做一些侦查工作,但只要解剖一个镜像文件,就能发现很多东西。例如,这里有一个 Prettier 代码格式化 的镜像可供快速浏览。

首先,让 Docker 守护进程 daemon 拉取镜像,然后将镜像提取到文件中:

docker pull tmknom/prettier:2.0.5
docker save tmknom/prettier:2.0.5 > prettier.tar

是的,该文件只是一个典型 tarball 格式的归档文件:

$ tar xvf prettier.tar
6c37da2ee7de579a0bf5495df32ba3e7807b0a42e2a02779206d165f55f1ba70/
6c37da2ee7de579a0bf5495df32ba3e7807b0a42e2a02779206d165f55f1ba70/VERSION
6c37da2ee7de579a0bf5495df32ba3e7807b0a42e2a02779206d165f55f1ba70/json
6c37da2ee7de579a0bf5495df32ba3e7807b0a42e2a02779206d165f55f1ba70/layer.tar
88f38be28f05f38dba94ce0c1328ebe2b963b65848ab96594f8172a9c3b0f25b.json
a9cc4ace48cd792ef888ade20810f82f6c24aaf2436f30337a2a712cd054dc97/
a9cc4ace48cd792ef888ade20810f82f6c24aaf2436f30337a2a712cd054dc97/VERSION
a9cc4ace48cd792ef888ade20810f82f6c24aaf2436f30337a2a712cd054dc97/json
a9cc4ace48cd792ef888ade20810f82f6c24aaf2436f30337a2a712cd054dc97/layer.tar
d4f612de5397f1fc91272cfbad245b89eac8fa4ad9f0fc10a40ffbb54a356cb4/
d4f612de5397f1fc91272cfbad245b89eac8fa4ad9f0fc10a40ffbb54a356cb4/VERSION
d4f612de5397f1fc91272cfbad245b89eac8fa4ad9f0fc10a40ffbb54a356cb4/json
d4f612de5397f1fc91272cfbad245b89eac8fa4ad9f0fc10a40ffbb54a356cb4/layer.tar
manifest.json
repositories

如你所见,Docker 在命名时经常使用 哈希 hash 。我们看看 manifest.json。它是以难以阅读的压缩 JSON 写的,不过 JSON 瑞士军刀 jq 可以很好地打印 JSON:

$ jq . manifest.json
[
  {
    "Config": "88f38be28f05f38dba94ce0c1328ebe2b963b65848ab96594f8172a9c3b0f25b.json",
    "RepoTags": [
      "tmknom/prettier:2.0.5"
    ],
    "Layers": [
      "a9cc4ace48cd792ef888ade20810f82f6c24aaf2436f30337a2a712cd054dc97/layer.tar",
      "d4f612de5397f1fc91272cfbad245b89eac8fa4ad9f0fc10a40ffbb54a356cb4/layer.tar",
      "6c37da2ee7de579a0bf5495df32ba3e7807b0a42e2a02779206d165f55f1ba70/layer.tar"
    ]
  }
]

请注意,这三个 Layer 对应三个以哈希命名的目录。我们以后再看。现在,让我们看看 Config 键指向的 JSON 文件。它有点长,所以我只在这里转储第一部分:

$ jq . 88f38be28f05f38dba94ce0c1328ebe2b963b65848ab96594f8172a9c3b0f25b.json | head -n 20
{
  "architecture": "amd64",
  "config": {
    "Hostname": "",
    "Domainname": "",
    "User": "",
    "AttachStdin": false,
    "AttachStdout": false,
    "AttachStderr": false,
    "Tty": false,
    "OpenStdin": false,
    "StdinOnce": false,
    "Env": [
      "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
    ],
    "Cmd": [
      "--help"
    ],
    "ArgsEscaped": true,
    "Image": "sha256:93e72874b338c1e0734025e1d8ebe259d4f16265dc2840f88c4c754e1c01ba0a",

最重要的是 history 列表,它列出了镜像中的每一层。Docker 镜像由这些层堆叠而成。Dockerfile 中几乎每条命令都会变成一个层,描述该命令对镜像所做的更改。如果你执行 RUN script.sh 命令创建了 really_big_file,然后用 RUN rm really_big_file 命令删除文件,Docker 镜像实际生成两层:一个包含 really_big_file,一个包含 .wh.really_big_file 记录来删除它。整个镜像文件大小不变。这就是为什么你会经常看到像 RUN script.sh && rm really_big_file 这样的 Dockerfile 命令链接在一起——它保障所有更改都合并到一层中。

以下是该 Docker 镜像中记录的所有层。注意,大多数层不改变文件系统镜像,并且 empty_layer 标记为 true。以下只有三个层是非空的,与我们之前描述的相符。

$ jq .history 88f38be28f05f38dba94ce0c1328ebe2b963b65848ab96594f8172a9c3b0f25b.json
[
  {
    "created": "2020-04-24T01:05:03.608058404Z",
    "created_by": "/bin/sh -c #(nop) ADD file:b91adb67b670d3a6ff9463e48b7def903ed516be66fc4282d22c53e41512be49 in / "
  },
  {
    "created": "2020-04-24T01:05:03.92860976Z",
    "created_by": "/bin/sh -c #(nop)  CMD [\"/bin/sh\"]",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:06.617130538Z",
    "created_by": "/bin/sh -c #(nop)  ARG BUILD_DATE",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:07.020521808Z",
    "created_by": "/bin/sh -c #(nop)  ARG VCS_REF",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:07.36915054Z",
    "created_by": "/bin/sh -c #(nop)  ARG VERSION",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:07.708820086Z",
    "created_by": "/bin/sh -c #(nop)  ARG REPO_NAME",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:08.06429638Z",
    "created_by": "/bin/sh -c #(nop)  LABEL org.label-schema.vendor=tmknom org.label-schema.name=tmknom/prettier org.label-schema.description=Prettier is an opinionated code formatter. org.label-schema.build-date=2020-04-29T06:34:01Z org
.label-schema.version=2.0.5 org.label-schema.vcs-ref=35d2587 org.label-schema.vcs-url=https://github.com/tmknom/prettier org.label-schema.usage=https://github.com/tmknom/prettier/blob/master/README.md#usage org.label-schema.docker.cmd=do
cker run --rm -v $PWD:/work tmknom/prettier --parser=markdown --write '**/*.md' org.label-schema.schema-version=1.0",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:08.511269907Z",
    "created_by": "/bin/sh -c #(nop)  ARG NODEJS_VERSION=12.15.0-r1",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:08.775876657Z",
    "created_by": "/bin/sh -c #(nop)  ARG PRETTIER_VERSION",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:26.399622951Z",
    "created_by": "|6 BUILD_DATE=2020-04-29T06:34:01Z NODEJS_VERSION=12.15.0-r1 PRETTIER_VERSION=2.0.5 REPO_NAME=tmknom/prettier VCS_REF=35d2587 VERSION=2.0.5 /bin/sh -c set -x &&     apk add --no-cache nodejs=${NODEJS_VERSION} nodejs-np
m=${NODEJS_VERSION} &&     npm install -g prettier@${PRETTIER_VERSION} &&     npm cache clean --force &&     apk del nodejs-npm"
  },
  {
    "created": "2020-04-29T06:34:26.764034848Z",
    "created_by": "/bin/sh -c #(nop) WORKDIR /work"
  },
  {
    "created": "2020-04-29T06:34:27.092671047Z",
    "created_by": "/bin/sh -c #(nop)  ENTRYPOINT [\"/usr/bin/prettier\"]",
    "empty_layer": true
  },
  {
    "created": "2020-04-29T06:34:27.406606712Z",
    "created_by": "/bin/sh -c #(nop)  CMD [\"--help\"]",
    "empty_layer": true
  }
]

太棒了!所有的命令都在 created_by 字段中,我们几乎可以用这些命令重建 Dockerfile。但不是完全可以。最上面的 ADD 命令实际上没有给我们需要添加的文件。COPY 命令也没有全部信息。我们还失去了 FROM 语句,因为它们扩展成了从基础 Docker 镜像继承的所有层。

我们可以通过查看 时间戳 timestamp ,按 Dockerfile 对层进行分组。大多数层的时间戳相差不到一分钟,代表每一层构建所需的时间。但是前两层是 2020-04-24,其余的是 2020-04-29。这是因为前两层来自一个基础 Docker 镜像。理想情况下,我们可以找出一个 FROM 命令来获得这个镜像,这样我们就有了一个可维护的 Dockerfile。

manifest.json 展示第一个非空层是 a9cc4ace48cd792ef888ade20810f82f6c24aaf2436f30337a2a712cd054dc97/layer.tar。让我们看看它:

$ cd a9cc4ace48cd792ef888ade20810f82f6c24aaf2436f30337a2a712cd054dc97/
$ tar tf layer.tf | head
bin/
bin/arch
bin/ash
bin/base64
bin/bbconfig
bin/busybox
bin/cat
bin/chgrp
bin/chmod
bin/chown

看起来它可能是一个 操作系统 operating system 基础镜像,这也是你期望从典型 Dockerfile 中看到的。Tarball 中有 488 个条目,如果你浏览一下,就会发现一些有趣的条目:

...
dev/
etc/
etc/alpine-release
etc/apk/
etc/apk/arch
etc/apk/keys/
etc/apk/keys/[email protected]
etc/apk/keys/[email protected]
etc/apk/keys/[email protected]
etc/apk/protected_paths.d/
etc/apk/repositories
etc/apk/world
etc/conf.d/
...

果不其然,这是一个 Alpine 镜像,如果你注意到其他层使用 apk 命令安装软件包,你可能已经猜到了。让我们解压 tarball 看看:

$ mkdir files
$ cd files
$ tar xf ../layer.tar
$ ls
bin  dev  etc  home  lib  media  mnt  opt  proc  root  run  sbin  srv  sys  tmp  usr  var
$ cat etc/alpine-release
3.11.6

如果你拉取、解压 alpine:3.11.6,你会发现里面有一个非空层,layer.tar 与 Prettier 镜像基础层中的 layer.tar 是一样的。

出于兴趣,另外两个非空层是什么?第二层是包含 Prettier 安装包的主层。它有 528 个条目,包含 Prettier、一堆依赖项和证书更新:

...
usr/lib/libuv.so.1
usr/lib/libuv.so.1.0.0
usr/lib/node_modules/
usr/lib/node_modules/prettier/
usr/lib/node_modules/prettier/LICENSE
usr/lib/node_modules/prettier/README.md
usr/lib/node_modules/prettier/bin-prettier.js
usr/lib/node_modules/prettier/doc.js
usr/lib/node_modules/prettier/index.js
usr/lib/node_modules/prettier/package.json
usr/lib/node_modules/prettier/parser-angular.js
usr/lib/node_modules/prettier/parser-babel.js
usr/lib/node_modules/prettier/parser-flow.js
usr/lib/node_modules/prettier/parser-glimmer.js
usr/lib/node_modules/prettier/parser-graphql.js
usr/lib/node_modules/prettier/parser-html.js
usr/lib/node_modules/prettier/parser-markdown.js
usr/lib/node_modules/prettier/parser-postcss.js
usr/lib/node_modules/prettier/parser-typescript.js
usr/lib/node_modules/prettier/parser-yaml.js
usr/lib/node_modules/prettier/standalone.js
usr/lib/node_modules/prettier/third-party.js
usr/local/
usr/local/share/
usr/local/share/ca-certificates/
usr/sbin/
usr/sbin/update-ca-certificates
usr/share/
usr/share/ca-certificates/
usr/share/ca-certificates/mozilla/
usr/share/ca-certificates/mozilla/ACCVRAIZ1.crt
usr/share/ca-certificates/mozilla/AC_RAIZ_FNMT-RCM.crt
usr/share/ca-certificates/mozilla/Actalis_Authentication_Root_CA.crt
...

第三层由 WORKDIR /work 命令创建,它只包含一个条目:

$ tar tf 6c37da2ee7de579a0bf5495df32ba3e7807b0a42e2a02779206d165f55f1ba70/layer.tar
work/

原始 Dockerfile 在 Prettier 的 git 仓库中


via: https://theartofmachinery.com/2021/03/18/reverse_engineering_a_docker_image.html

作者:Simon Arneaud 选题:lujun9972 译者:DCOLIVERSUN 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

使用树莓派或其它单板机创建一个“家庭私有云”。

构建一个家庭实验室可以是一个有趣的方式,可以让你学习的新概念和实验新技术时还能自娱自乐。得益于以 树莓派 为首的单板计算机(SBC)的流行,在舒适的家里就可以轻松构建一个多计算机实验室。比起试图在主流的云服务商建立的相同配置,创建一个“家庭私有云”以花更少的钱来体验到云原生技术,也是一个极好的方法。

这篇文章阐述如何修改树莓派或其它的单板机的磁盘镜像,预配置主机的 SSH,并禁用首次启动时强制竞选交互配置的服务。这是一个让你的设备“即启动,即运行”的极好方法,类似于云端实例。之后,你可以使用自动化的流程通过 SSH 连接来进行更专业和更深入的配置。

此外, 当向你的实验室添加更多的树莓派时,修改磁盘镜像可以来让你只需要将该镜像写到一个 SD 卡、放入树莓派中就可以了!

 title=

解压缩和挂载镜像

对于这个项目,你需要修改一个服务器磁盘镜像。在测试期间,我使用 Fedora Server 31 ARM。在你下载该磁盘镜像并验证其校验和之后,你需要将其解压缩并挂载其到宿主机的文件系统的某个位置上,以便你可以根据需要修改它。

你可以使用 xz 命令通过 --decompress 参数来解压缩 Fedora 服务器镜像:

xz --decompress Fedora-Server-armhfp-X-y.z-sda.raw.xz

这会留下一个解压缩后的原始磁盘镜像(它会自动地替换 .xz 压缩文件)。这个原始磁盘镜像就像它听起来的那样:一个包含格式化后安装好的磁盘上的所有数据的文件。这包含分区信息、启动分区、root 分区以及其它分区。你需要挂载你打算在其中进行修改的分区,但是要做到这一点,你需要知道磁盘镜像中的分区起始位置和扇区大小,这样你才可以挂载该文件正确的扇区。

幸运的是,你可以在一个磁盘镜像上使用 fdisk 命令,就像在实际磁盘上使用一样容易。使用 --list-l 参数来查看分区的列表和其信息:

# 使用 fdisk 来列出原始镜像文件的分区:
$ fdisk -l Fedora-Server-armhfp-31-1.9-sda.raw
Disk Fedora-Server-armhfp-X-y.z-sda.raw: 3.2 GiB, 3242196992 bytes, 6332416 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xdaad9f57

Device                               Boot   Start     End Sectors  Size Id Type
Fedora-Server-armhfp-X-y.z-sda.raw1         8192  163839  155648   76M  c W95 F
Fedora-Server-armhfp-X-y.z-sda.raw2 *     163840 1163263  999424  488M 83 Linux
Fedora-Server-armhfp-X-y.z-sda.raw3      1163264 6047743 4884480  2.3G 83 Linux

你需要的所有信息都可在上面的输出中获得。第 3 行表示扇区大小(包括逻辑和物理的):512 字节 / 512 字节。

设备列表显示的是原始磁盘镜像中的分区。第一个,Fedora-Server-armhfp-X-y.z-sda.raw1 毫无疑问是引导程序分区,因为它是第一个,很小(仅仅 76MB),而且类型被标识为 c,即 W95 FAT32(LBA),这是一个从 SD 卡启动的 FAT32 分区。

第二个分区也不是非常大,只有 488MB。这个分区是一个 Linux 原生类型分区(Id 83),它可能是包含内核和 initramfs 的 Linux 启动分区。

第三个分区可能是你需要的东西:它有 2.3GB 大小,所以在它其中应该有发行版的主要部分,并且它是一个 Linux 原生分区类型,这也是在预料之中的。这个分区应该包含了你需要修改的分区和数据。

第三个分区从扇区 1163264 开始(在 fdisk 的输出中被显示为 Start 列),所以你的挂载偏移量是 595591168,计算方法是将扇区大小(512)乘以起始扇区(1163264)(即 512 * 1163264)。这意味着你需要以偏移量 595591168 挂载该文件,才能挂载到正确位置。

装备了这些信息,现在你可以将第三个分区挂载到你的家目录中了:

$ mkdir ~/mnt
$ sudo mount -o loop,offset=595591168 Fedora-Server-armhfp-X-y.z-sda.raw ~/mnt
$ ls ~/mnt

直接在磁盘镜像中作业

在磁盘镜像被解压缩和被挂载到宿主机上的一个位置后,就可以修改镜像以符合你的需求。在我看来,对镜像进行更改的最简单的方法是使用 chroot 来将你会话的工作根目录更改为挂载镜像的工作根目录。不过,有点棘手。

在你改变了根目录后,你的会话将使用新的根目录下的二进制文件。除非你是在一个 ARM 系统做这些所有的操作,否则解压缩后的磁盘镜像的架构将与你正在使用的宿主机系统不同。即使在 chroot 环境中,宿主机系统也无法使用一个不同架构的二进制文件。至少,不能在本机使用。

幸运的是,这里有一个解决方案:qemu-user-static。来自 Debian Wiki 的说明:

“[qemu-user-static] 提供了用户模式的仿真二进制文件,是静态构建的。在这个模式中,QEMU 可以在一个 CPU 上启动为另一个 CPU 编译的 Linux 进程 …… 如果安装了 binfmt-support 软件包,qemu-user-static 软件包会注册提供的仿真器可以处理的二进制文件格式,以便其能够直接运行其他架构的二进制文件。”

这正是你需要在 chroot 环境中非本地架构中工作所需的。如果宿主机系统是 Fedora,使用 DNF 来安装 qemu-user-static 软件包,并重新启动 systemd-binfmt.service

# 使用 DNF 启用非本地的 arch chroot 环境,添加新的二进制文件格式信息
# 输出镜像了精简
$ dnf install qemu-user-static
$ systemctl restart systemd-binfmt.service

使用这种方法,你一个能够更改根目录到挂载的磁盘镜像,运行 uname 命令来验证一切都在正常:

sudo chroot ~/mnt/ /usr/bin/uname -a -r
Linux marvin 5.5.16-200.fc31.x86_64 #1 SMP Wed Apr 8 16:43:33 UTC 2020 armv7l armv7l armv7l GNU/Linux

在 chroot 环境中运行 uname 将在输出中显示 armv7l,这个原始磁盘镜像的架构, 而不是宿主机的架构。一切如预期,可以继续修改镜像了。

修改磁盘镜像

现在你可以直接切换到这个基于 ARM 的磁盘镜像中,并在该环境中工作了,你可以对镜像自身镜像修改了。你需要设置该镜像,以便它能够启动并可立即访问,而不需要在树莓派上做任何额外的设置。为此,你需要安装并启用 sshd(OpenSSH 守护进程),并为 SSH 访问添加授权密码。

为了使其表现得更像一个云环境,实现在家里建立私有云的梦想,添加一个本地用户,给予该用户 sudo 权限,并(为了像云端的重度用户一样)允许该用户无需密码就可以使用 sudo

所以,你将做的事情是:

  • 安装并启用 SSHD(SSHD 已经在 Fedora ARM 镜像中安装并启用,但是你可能需要为你发行版手动执行这些工作)
  • 设置一个本地用户
  • 允许本地用户来使用 sudo(无需密码,可选)
  • 添加授权密钥
  • 允许 root 使用授权密码镜像 SSH(可选)

我使用 GitHub 功能,它允许你上传你的 SSH 公钥,并在 https://github.com/.keys 处可访问。我发现这是一种很方便的分发公钥的方法,不过我生性多疑,我总是检查下载的密钥是否与我预期的匹配。如果你不想使用这种方法,你可以从你宿主机中复制你公钥到 chroot 环境中,或者你可以将公钥托管在你控制的 Web 服务器上以便使用相同的工作流。

要开始修改磁盘镜像,再次切换根目录到挂载的磁盘镜像中,这次启动一个 shell,以便可以运行多个命令:

# 为了简洁起见,省略了这些命令的输出(如果有的话) 
$ sudo chroot ~/mnt /bin/bash

# 安装 openssh-server ,并启用它 (在 Fedora 上已经完成)
$ dnf install -y openssh-server
$ systemctl enable sshd.service

# 允许 root 使用授权密码访问 SSH
$ mkdir /root/.ssh

# 下载或者另外添加授权密码文件,你的公共密码
# 将 URL 替换为你自己公共密码的路径
$ curl <https://github.com/clcollins.keys> -o /root/.ssh/authorized_keys
$ chmod 700 /root/.ssh
$ chmod 600 /root/.ssh/authorized_keys

# 添加一个本地用户,并放置他们到 wheel 组中
# 将组和用户更改为您想要的一切
useradd -g chris -G wheel -m -u 1000 chris

# 下载并添加你的授权密码
# 像你上面所做的那样更改 home 目录和URL
mkdir /home/chris/.ssh
curl <https://github.com/clcollins.keys> -o /home/chris/.ssh/authorized_keys
chmod 700 /home/chris/.ssh
chmod 600 /home/chris/.ssh/authorized_keys
chown -R chris.chris /home/chris/.ssh/

# 允许 wheel 组( 使用你的本地用户) 不需要使用密码来使用 suso
echo "%wheel ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers.d/91-wheel-nopasswd

这就是树莓派或其它单板机在首次启动时需要完成设置 SSH 的全部工作。不过,每个发行版都有自己的特点。例如,Raspbian 已经包含一个本地用户:pi,并且不使用 wheel 组。因此对于 Raspbian 来说,最好使用现有用户,或者删除 pi 用户,并使用另一个用户来替换它。

在 Fedora ARM 的情况下,镜像会在首次引导启动时提示你完成设置。这会破坏你在上面所做的修改的目的,尤其是在设置完成之前,它会完全阻止启动。你的目标是使树莓派的功能类似于私有云的基础设施的一部分一样运行,而这个工作流程包括在主机启动时通过 SSH 远程设置主机。 禁用初始化设置,它由 initial-setup.service 控制:

# 对多用户和图形目标禁用 initial-setup.service
unlink /etc/systemd/system/multi-user.target.wants/initial-setup.service
unlink /etc/systemd/system/graphical.target.wants/initial-setup.service

当你在 chroot 环境时,你可以对你系统做任何你想做的其它更改,或者就放在那里,在第一次启动后,按照云原生的工作流通过 SSH 进行配置。

重新压缩并安装修改后的镜像

完成了这些更改后,剩下的就是重新压缩磁盘镜像,并将其安装其到你的树莓派的 SD 卡上。

确保退出 chroot 环境,然后卸载磁盘镜像:

$ sudo umount ~/mnt/

就像最初解压缩镜像一样,你可以再次使用 xz 命令来压缩镜像。通过使用 --keep 参数,xz 将保留原始的镜像,而不是清理掉它。虽然这会占用更多的磁盘空间,但保留下来的未压缩镜像将允许你对正在处理的镜像进行增量更改,而不需要每次都对其进行解压缩。这对于在测试和调整镜像时节省时间是非常好的。

# 压缩压缩磁盘镜像为一个 .xz 文件,但保留原始磁盘镜像
xz --compress Fedora-Server-armhfp-31-1.9-sda.raw --keep

压缩过程将花费一些时间,所以趁着这个时间站起来,舒展身体,让你的血液再次流动。

在压缩完成后,可以将新的、已修改过的磁盘镜像复制到 SD 卡上,以便与树莓派一起使用。标准的 dd 方法将镜像放置到 SD 卡上也很好用,但是我喜欢使用 Fedora 的 arm-image-installer,因为它因为它在处理未经编辑的镜像时提供了一些选项。它对编辑过的镜像也很好用,并且比 dd 命令更友好一些。

确保检查 SD 卡在哪个磁盘驱动器上,并用 --media 参数使用它:

# 使用 arm-image-installer 来复制已修改的磁盘镜像到 SD 卡上
arm-image-installer --image=Fedora-Server-armhfp-X-y.z-sda.raw.xz --target=rpi3 --media=/dev/sdc --norootpass --resizefs -y

现在,你已经为树莓派或其它单板机准备好了一个新的、已修改的 Fedora Server ARM 镜像,准备好启动并立即 SSH 到你的修改镜像中。这种方法也可以用来做其它的修改,并且你也可以使用其它发行版的原始磁盘镜像,如果你更喜欢它们,而不是 Fedora 的话。这是一个开始构建家庭实验室私有云的良好基础。在以后的文章中,我将指导你使用云技术和自动化建立一个家庭实验室。

延伸阅读

为了学习如何做这篇文章中的事情,我做了很多研究。以下是我找到的两个对学习如何定制磁盘映像和使用非原生架构最有帮助的资料。它们对我从“不知道自己在做什么”到“我能够完成它!”非常有帮助。


via: https://opensource.com/article/20/5/disk-image-raspberry-pi

作者:Chris Collins 选题:lujun9972 译者:robsean 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

随着容器和容器技术的兴起,现在所有主流的 Linux 发行版都提供了容器基础镜像。本文介绍了 Fedora 项目如何构建其基本镜像,同时还展示了如何使用它来创建分层图像。

基础和分层镜像

在看如何构建 Fedora 容器 基础镜像 base image 之前,让我们定义基础镜像和 分层镜像 layered image 。定义基础镜像的简单方法是没有父镜像层的镜像。但这具体意味着什么呢?这意味着基础镜像通常只包含操作系统的根文件系统基础镜像(rootfs)。基础镜像通常提供安装软件以创建分层镜像所需的工具。

分层镜像在基础镜像上添加了一组层,以便安装、配置和运行应用。分层镜像在 Dockerfile 中使用 FROM 指令引用基础镜像:

FROM fedora:latest

如何构建基础镜像

Fedora 有一整套用于构建容器镜像的工具。其中包括 podman,它不需要以 root 身份运行。

构建 rootfs

基础镜像主要由一个 tarball) 构成。这个 tarball 包含一个 rootfs。有不同的方法来构建此 rootfs。Fedora 项目使用 kickstart) 安装方式以及 imagefactory 来创建这些 tarball。

在创建 Fedora 基础镜像期间使用的 kickstart 文件可以在 Fedora 的构建系统 Koji 中找到。Fedora-Container-Base 包重新组合了所有基础镜像的构建版本。如果选择了一个构建版本,那么可以访问所有相关文件,包括 kickstart 文件。查看 示例,文件末尾的 %packages 部分定义了要安装的所有软件包。这就是让软件放在基础镜像中的方法。

使用 rootfs 构建基础镜像

rootfs 完成后,构建基础镜像就很容易了。它只需要一个包含以下指令的 Dockerfile:

FROM scratch
ADD layer.tar /
CMD ["/bin/bash"]

这里的重要部分是 FROM scratch 指令,它会创建一个空镜像。然后,接下来的指令将 rootfs 添加到镜像,并设置在运行镜像时要执行的默认命令。

让我们使用 Koji 内置的 Fedora rootfs 构建一个基础镜像:

$ curl -o fedora-rootfs.tar.xz https://kojipkgs.fedoraproject.org/packages/Fedora-Container-Base/Rawhide/20190902.n.0/images/Fedora-Container-Base-Rawhide-20190902.n.0.x86_64.tar.xz
$ tar -xJvf fedora-rootfs.tar.xz 51c14619f9dfd8bf109ab021b3113ac598aec88870219ff457ba07bc29f5e6a2/layer.tar 
$ mv 51c14619f9dfd8bf109ab021b3113ac598aec88870219ff457ba07bc29f5e6a2/layer.tar layer.tar
$ printf "FROM scratch\nADD layer.tar /\nCMD [\"/bin/bash\"]" > Dockerfile
$ podman build -t my-fedora .
$ podman run -it --rm my-fedora cat /etc/os-release

需要从下载的存档中提取包含 rootfs 的 layer.tar 文件。这在 Fedora 生成的镜像已经可以被容器运行时使用才需要。

因此,使用 Fedora 生成的镜像,获得基础镜像会更容易。让我们看看它是如何工作的:

$ curl -O https://kojipkgs.fedoraproject.org/packages/Fedora-Container-Base/Rawhide/20190902.n.0/images/Fedora-Container-Base-Rawhide-20190902.n.0.x86_64.tar.xz
$ podman load --input Fedora-Container-Base-Rawhide-20190902.n.0.x86_64.tar.xz
$ podman run -it --rm localhost/fedora-container-base-rawhide-20190902.n.0.x86_64:latest cat /etc/os-release

构建分层镜像

要构建使用 Fedora 基础镜像的分层镜像,只需在 FROM 行指令中指定 fedora

FROM fedora:latest

latest 标记引用了最新的 Fedora 版本(编写本文时是 Fedora 30)。但是可以使用镜像的标签来使用其他版本。例如,FROM fedora:31 将使用 Fedora 31 基础镜像。

Fedora 支持将软件作为容器来构建并发布。这意味着你可以维护 Dockerfile 来使其他人可以使用你的软件。关于在 Fedora 中成为容器镜像维护者的更多信息,请查看 Fedora 容器指南


via: https://fedoramagazine.org/how-to-build-fedora-container-images/

作者:Clément Verna 选题:lujun9972 译者:geekpi 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出