标签 LED 下的文章

这个树莓派教程用于制作一个可编程的 LED 灯光显示器,非常适合各种技能水平的人。

我喜欢圣诞装饰品和灯饰,因此很长一段时间以来我一直想做一个可编程的 LED 项目。最近,我制作了一个由 LED 灯、乒乓球和树莓派 Zero 组成的灯阵列。这个项目相对简单并且具有教学价值,因此我认为它非常值得分享。

整个彩灯由我设计,但其中一些灵感也来自 YouTube。你可以在我的 Git 存储库 中找到源代码和制作说明。

购物清单

  • 树莓派 Zero
  • 树莓派保护壳
  • 5V 2A 的电源线
  • 展架
  • 255 个乒乓球
  • 热熔胶枪和若干热熔胶棒
  • 烙铁
  • 焊锡丝
  • 22 AWG 0.35mm 实芯线
  • 10 米 WS2812(B) LED 灯带(每米 30 像素)
  • 万用表
  • 钢丝钳
  • 剥线钳

设计树莓派的灯光效果

这个设计是根据我展框的大小决定的。我在全球速卖通买到了每米 30 像素的灯带,它可以轻松地切成 0.5 米的长度,每条有 15 个 LED 灯。乒乓球的直径是 40 毫米,所以我测量并隔开 40 毫米划了线,LED 灯条放在每隔 40 毫米的中间部分,这就产生了 17 条线。因此我的灯光阵列是 15×17。你可以根据实际情况来调整尺寸。

为了给灯带和树莓派供电,我在电路板底部设置了数据线和电源线。我的 LED 灯不需要很多电,所以我使用树莓派 Zero 的 5V 输出 GPIO 为它们供电。当我以 50% 的亮度运行时,这个亮度已经足以在白天和晚上透过我的窗户看到。

布线

我从电路板的底部以之字形开始布线,这使得焊接非常容易,因为每行的末尾不必返回到每行的开头。

我的线路大致像这样(为清楚起见,这里进行了简化,实际上它一共有 17 行):

<---------------\
                |
/---------------/
|
\---------------< # 这里连接树莓派

使用树莓派制作显示屏

当设计和布线的工作完成后就可以开始制作显示屏了。

我在展板上测量并绘制了线路。我的灯带背面有胶带,所以我只需要取下背衬并将其贴在展板上。我检查了每个灯带的位置和数据线的方向,以确保灯带可以按照树莓派的指令正确串联起来。

连接好所有灯带后,我剪下三段长度相同的电线,并将每个灯带末端的电源线、数据线和接地线连接到其上方。

Connect each light strip at the end of each line.

在线路连接完成后,我检查了每条灯带之间的电源线和地线之间的连接,以确保其连通性。我还检查了是否存在错误的桥接,所以我验证了电源线和地线之间的连接。我还进行了一些测试以确保所有灯都正常点亮(链路测试参阅 测试代码)。

完成上述工作后,我开始在乒乓球上剪洞,用剪刀刺入乒乓球的底部,然后剪一个小洞让 LED 灯穿进去。手工不太行,每个球都不太一样,但效果真的很好。我使用的每米 30 个像素的 LED 灯,所以每个 LED 之间有大约 30 毫米的空隙。一个乒乓球是 40 毫米宽,但我不打算开始单独焊接每一个 LED!我想,这是很重要的。首先,我并不擅长焊接(正如我的照片所显示的),而且无论如何,我想“好吧,它们是乒乓球。我可以把它们压在一起!”

我是这样做的:

在 LED 灯上滴上热熔胶,然后在 LED 上放了一个乒乓球并按住大约五秒钟,就粘好了一个乒乓球。粘贴下一个乒乓球时我只需要挤着上一个乒乓球,就能让所有乒乓球都变得整齐了。我对它的外观很满意。它还有一个很好的好处,就是掩盖了我糟糕的焊接工作;)

It's a tight fit, but the 40mm ping pong balls fit in a 30mm space just fine.

我继续为余下的乒乓球进行焊接。尽管这个过程中有几个乒乓球被压碎了,但最终还是顺利完成了制作。

255 LEDs and 255 ping pong balls in an array.

测试代码

测试代码需要确保所有部件都能正常工作,为此我使用了这个 Adafruit 指南,它以红、绿和蓝点亮每个 LED,然后依次进行循环。我在测试时使用它来确保我连接无误并且焊接正常。

在此之后,我在电子表格中设计了一个网格,将每个像素映射到一个网格位置。由于我的像素编号呈之字形排列,因此很难跟踪每个 LED(例如 A1 为 256,B1 为 226)。重新映射网格位置能使得我在构建图像时更容易。

在所有准备工作完成之后,我就可以在纸上和电子表格中设计图像,然后编码。于是我开始添加一些动画(使用循环并将像素变为一种颜色,然后变为另一种颜色)。

最终的结果还算顺利。

A Christmas gift in LED.

Reindeer painted with light.

An LED snowflake.

能玩一年的树莓派彩灯

我不确定这是否已经完全完成了。自从把它摆放到橱窗里,几乎每个晚上我都会添加一些新的图像和动画。我已经在考虑除夕夜的时候要做成什么样了。它不会像圣诞装饰品一起在圣诞节后被放进储藏室。我只需要在上面显示其它图案,就能使它成为一个能玩一年的彩灯!我的一个朋友推荐了像素版马里奥,这听起来是个好主意!

我的代码仍然需要完善。例如,我做了一些滚动文本,但当我为文本的每个位置重新绘制时却花了很多时间。我想我可以用循环做一些事情,或者图像库可以帮助更轻松地滚动字母,并使添加文本更容易,而不是在每一步打开和关闭每个像素。

这里有一张照片记录了我制作的全过程:LED 乒乓墙

可以在此处观看它的运行视频:XMas 灯光展示

这个彩灯最终的效果我非常满意。以后我也会尝试更多利用 LED 彩灯完成的项目。我也鼓励大家亲自动手制作一个这样的彩灯,它会比你想象中更简单。


via: https://opensource.com/article/22/11/raspberry-pi-holiday-light-display

作者:Brian McCafferty 选题:lkxed 译者:Return7g 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

OpenRGB 是一个有用的开源工具,可以一个工具管理所有的 RGB 灯光。让我们来了解一下它。

无论是你的键盘、鼠标、CPU 风扇、AIO,还是其他连接的外围设备或组件,Linux 都没有官方软件支持来控制 RGB 灯光。

而 OpenRGB 似乎是一个适用于 Linux 的多合一 RGB 灯光控制工具。

OpenRGB:多合一的 RGB 灯光控制中心

是的,你可能会找到不同的工具来调整设置,如 Piper 专门 在 Linux 上配置游戏鼠标。但是,如果你有各种组件或外设,要把它们都设置成你喜欢的 RGB 颜色,那将是一件很麻烦的事情。

OpenRGB 是一个令人印象深刻的工具,它不仅专注于 Linux,也可用于 Windows 和 MacOS。

它不仅仅是一个将所有 RGB 灯光设置放在一个工具下的想法,而是旨在摆脱所有需要安装来调整灯光设置的臃肿软件。

即使你使用的是 Windows 系统的机器,你可能也知道像 Razer Synapse 这样的软件工具是占用资源的,并伴随着它们的问题。因此,OpenRGB 不仅仅局限于 Linux 用户,还适用于每一个希望调整 RGB 设置的用户。

它支持大量设备,但你不应该期待对所有设备的支持。

OpenRGB 的特点

它在提供简单的用户体验的同时,赋予了你许多有用的功能。其中的一些特点是:

  • 轻便的用户界面
  • 跨平台支持
  • 能够使用插件扩展功能
  • 设置颜色和效果
  • 能够保存和加载配置文件
  • 查看设备信息
  • 连接 OpenRGB 的多个实例,在多台电脑上同步灯光

除了上述所有的特点外,你还可以很好地控制照明区域、色彩模式、颜色等。

在 Linux 中安装 OpenRGB

你可以在其官方网站上找到 AppImage 文件和 DEB 包。对于 Arch Linux 用户,你也可以在 AUR 中找到它。

如需更多帮助,你可以参考我们的 AppImage 指南安装 DEB 文件的方法来设置。

官方网站应该也可以让你下载其他平台的软件包。但是,如果你想探索更多关于它的信息或自己编译它,请前往它的 GitLab 页面

总结

尽管我没有很多支持 RGB 的设备/组件,但我可以成功地调整我的罗技 G502 鼠标。

如果你想摆脱多个应用,用一个轻量级的界面来管理你所有的 RGB 灯光,我肯定会推荐你试一试。

你已经试过它了吗?欢迎在评论中分享你对它的看法!


via: https://itsfoss.com/openrgb/

作者:Ankush Das 选题:lujun9972 译者:geekpi 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

电子产品的小型化正在触及其极限,部分原因在于热量管理。许多人现在都在积极地尝试解决这个问题。其中一种正在探索的途径是反向运行的 LED。

monsitj / Getty Images

寻找更有效的冷却计算机的方法,几乎与渴望发现更好的电池化学成分一样,在科学家的研究日程中也处于重要位置。

更多的冷却手段对于降低成本至关重要。冷却技术也使得在较小的空间中可以进行更强大的处理,其有限的处理能力应该是进行计算而不是浪费热量。冷却技术可以阻止热量引起的故障,从而延长部件的使用寿命,并且可以促进环保的数据中心 —— 更少的热量意味着对环境的影响更小。

如何从微处理器中消除热量是科学家们一直在探索的一个方向,他们认为他们已经提出了一个简单而不寻常、且反直觉的解决方案。他们说可以运行一个发光二极管(LED)的变体,其电极反转可以迫使该元件表现得像处于异常低温下工作一样。如果将其置于较热的电子设备旁边,然后引入纳米级间隙,可以使 LED 吸收热量。

“一旦 LED 反向偏置,它就会像一个非常低温的物体一样,吸收光子,”密歇根大学机械工程教授埃德加·梅霍夫在宣布了这一突破的新闻稿中说。 “与此同时,该间隙可防止热量返回,从而产生冷却效果。”

研究人员表示,LED 和相邻的电子设备(在这种情况下是热量计,通常用于测量热能)必须非常接近。他们说他们已经能够证明达到了每平方米 6 瓦的冷却功率。他们解释说,这是差不多是地球表面所接受到的阳光的能量。

物联网(IoT)设备和智能手机可能是最终将受益于这种 LED 改造的电子产品。这两种设备都需要在更小的空间中容纳更多的计算功率。

“从微处理器中可以移除的热量开始限制在给定空间内容纳的功率,”密歇根大学的公告说。

材料科学和冷却计算机

我之前写过关于新形式的计算机冷却的文章。源自材料科学的外来材料是正在探索的想法之一。美国能源部劳伦斯伯克利国家实验室表示,钠铋(Na3Bi)可用于晶体管设计。这种新物质带电荷,重要的是具有可调节性;但是,它不需要像超导体那样进行冷却。

事实上,这是超导体的一个问题。不幸的是,它们比大多数电子设备需要更多的冷却 —— 通过极端冷却消除电阻。

另外,康斯坦茨大学的德国研究人员表示他们很快将拥有超导体驱动的计算机,没有废热。他们计划使用电子自旋 —— 一种新的电子物理维度,可以提高效率。该大学去年在一份新闻稿中表示,这种方法“显著降低了计算中心的能耗”。

另一种减少热量的方法可能是用嵌入在微处理器上的螺旋和回路来取代传统的散热器。宾汉姆顿大学的科学家们表示,印在芯片上的微小通道可以为冷却剂提供单独的通道。

康斯坦茨大学说:“半导体技术的小型化正在接近其物理极限。”热管理现在被科学家提上了议事日程。这是“小型化的一大挑战”。


via: https://www.networkworld.com/article/3386876/running-leds-in-reverse-could-cool-computers.html#tk.rss_all

作者:Patrick Nelson 选题:lujun9972 译者:wxy 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

如果你喜欢 Fedora、容器,而且有一块树莓派,那么这三者结合操控 LED 会怎么样?本文介绍的是 Fedora IoT,将展示如何在树莓派上安装预览镜像。还将学习如何与 GPIO 交互以点亮 LED。

什么是 Fedora IoT?

Fedora IoT 是当前 Fedora 项目的目标之一,计划成为一个完整的 Fedora 版本。Fedora IoT 将是一个在 ARM(目前仅限 aarch64)设备上(例如树莓派),以及 x86\_64 架构上运行的系统。

Fedora IoT 基于 OSTree 开发,就像 Fedora Silverblue 和以往的 Atomic Host

下载和安装 Fedora IoT

官方 Fedora IoT 镜像将和 Fedora 29 一起发布。但是在此期间你可以下载 基于 Fedora 28 的镜像 来进行这个实验。(LCTT 译注:截止至本译文发布,Fedora 29 已经发布了,但是 IoT 版本并未随同发布,或许会在 Fedora 30 一同发布?)

你有两种方法来安装这个系统:要么使用 dd 命令烧录 SD 卡,或者使用 fedora-arm-installer 工具。Fedora 的 Wiki 里面提供了为 IoT 设置物理设备 的更多信息。另外,你可能需要调整第三个分区的大小。

把 SD 卡插入到设备后,你需要创建一个用户来完成安装。这个步骤需要串行连接或一个 HDMI 显示器和键盘来与设备进行交互。

当系统安装完成后,下一步就是要设置网络连接。使用你刚才创建的用户登录系统,可以使用下列方式之一完成网络连接设置:

  • 如果你需要手动配置你的网络,可能需要执行类似如下命令,需要保证设置正确的网络地址:
$ nmcli connection add con-name cable ipv4.addresses \
192.168.0.10/24 ipv4.gateway 192.168.0.1 \
connection.autoconnect true ipv4.dns "8.8.8.8,1.1.1.1" \
type ethernet ifname eth0 ipv4.method manual
  • 如果你网络上运行着 DHCP 服务,可能需要类似如下命令:
$ nmcli con add type ethernet con-name cable ifname eth0

Fedora 中的 GPIO 接口

许多关于 Linux 上 GPIO 的教程都关注传统的 GPIO sysfis 接口。这个接口已经不推荐使用了,并且上游 Linux 内核社区由于安全和其他问题的缘故打算完全删除它。

Fedora 已经不将这个传统的接口编译到内核了,因此在系统上没有 /sys/class/gpio 这个文件。此教程使用一个上游内核提供的一个新的字符设备 /dev/gpiochipN 。这是目前和 GPIO 交互的方式。

为了和这个新设备进行交互,你需要使用一个库和一系列命令行界面的工具。常用的命令行工具比如说 echocat 在此设备上无法正常工作。

你可以通过安装 libgpiod-utils 包来安装命令行界面工具。python3-libgpiod 包提供了相应的 Python 库。

使用 Podman 来创建一个容器

Podman 是一个容器运行环境,其命令行界面类似于 Docker。Podman 的一大优势是它不会在后台运行任何守护进程。这对于资源有限的设备尤其有用。Podman 还允许您使用 systemd 单元文件启动容器化服务。此外,它还有许多其他功能。

我们使用如下两步来创建一个容器:

  1. 创建包含所需包的分层镜像。
  2. 使用分层镜像创建一个新容器。

首先创建一个 Dockerfile 文件,内容如下。这些内容告诉 Podman 基于可使用的最新 Fedora 镜像来构建我们的分层镜像。然后就是更新系统和安装一些软件包:

FROM fedora:latest
RUN  dnf -y update
RUN  dnf -y install libgpiod-utils python3-libgpiod

这样你就完成了镜像的生成前的配置工作,这个镜像基于最新的 Fedora,而且包含了和 GPIO 交互的软件包。

现在你就可以运行如下命令来构建你的基本镜像了:

$ sudo podman build --tag fedora:gpiobase -f ./Dockerfile

你已经成功创建了你的自定义镜像。这样以后你就可以不用每次都重新搭建环境了,而是基于你创建的镜像来完成工作。

使用 Podman 完成工作

为了确认当前的镜像是否就绪,可以运行如下命令:

$ sudo podman images
REPOSITORY                 TAG        IMAGE ID       CREATED          SIZE
localhost/fedora           gpiobase   67a2b2b93b4b   10 minutes ago  488MB
docker.io/library/fedora   latest     c18042d7fac6   2 days ago     300MB

现在,启动容器并进行一些实际的实验。容器通常是隔离的,无法访问主机系统,包括 GPIO 接口。因此需要在启动容器时将其挂载在容器内。可以使用以下命令中的 -device 选项来解决:

$ sudo podman run -it --name gpioexperiment --device=/dev/gpiochip0 localhost/fedora:gpiobase /bin/bash

运行之后就进入了正在运行的容器中。在继续之前,这里有一些容器命令。输入 exit 或者按下 Ctrl+D 来退出容器。

显示所有存在的容器可以运行如下命令,这包括当前没有运行的,比如你刚刚创建的那个:

$ sudo podman container ls -a
CONTAINER ID   IMAGE             COMMAND     CREATED          STATUS                              PORTS   NAMES
64e661d5d4e8   localhost/fedora:gpiobase   /bin/bash 37 seconds ago Exited (0) Less than a second ago           gpioexperiment

使用如下命令创建一个新的容器:

$ sudo podman run -it --name newexperiment --device=/dev/gpiochip0 localhost/fedora:gpiobase /bin/bash

如果想删除容器可以使用如下命令:

$ sudo podman rm newexperiment

点亮 LED 灯

现在可以使用已创建的容器。如果已经从容器退出,请使用以下命令再次启动它:

$ sudo podman start -ia gpioexperiment

如前所述,可以使用 Fedora 中 libgpiod-utils 包提供的命令行工具。要列出可用的 GPIO 芯片可以使用如下命令:

$ gpiodetect
gpiochip0 [pinctrl-bcm2835] (54 lines)

要获取特定芯片的连线列表,请运行:

$ gpioinfo gpiochip0

请注意,物理引脚数与前一个命令所打印的连线数之间没有相关性。重要的是 BCM 编号,如 pinout.xyz 所示。建议不要使用没有相应 BCM 编号的连线。

现在,将 LED 连接到物理引脚 40,也就是 BCM 21。请记住:LED 的短腿(负极,称为阴极)必须连接到带有 330 欧姆电阻的树莓派的 GND 引脚, 并且长腿(阳极)到物理引脚 40。

运行以下命令点亮 LED,按下 Ctrl + C 关闭:

$ gpioset --mode=wait gpiochip0 21=1

要点亮一段时间,请添加 -b(在后台运行)和 -s NUM(多少秒)参数,如下所示。 例如,要点亮 LED 5 秒钟,运行如下命令:

$ gpioset -b -s 5 --mode=time gpiochip0 21=1

另一个有用的命令是 gpioget。 它可以获得引脚的状态(高或低),可用于检测按钮和开关。

总结

你也可以使用 Python 操控 LED —— 这里有一些例子。 也可以在容器内使用 i2c 设备。 此外,Podman 与此 Fedora 版本并不严格相关。你可以在任何现有的 Fedora 版本上安装它,或者在 Fedora 中使用两个基于 OSTree 的新系统进行尝试:Fedora SilverblueFedora CoreOS


via: https://fedoramagazine.org/turnon-led-fedora-iot/

作者:Alessio Ciregia 选题:lujun9972 译者:ScarboroughCoral 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出