标签 路由器 下的文章

在本文中,我们将学习通过使用 NAT 技术将安装有 RHEL/CentOS 6 & 7 的机器转变成路由器来用。 我们都知道,路由器是一个工作在第三层的网络设备,用于将两个或多个网络连接在一起,即,将局域网连接上广域网上或者局域网直接互联。 路由器非常昂贵,尤其对于小型组织来说更是如此,这可能是我们关注路由器的一个原因。 与其使用专用硬件,不如让我们用 Linux 机器转换成路由器来用。

RHEL/CentOS 6 和 7 上的操作过程我们都会讲。但在开始之前, 让我们先看看需要准备那些东西。

前期条件

1、 一台装有 RHEL/CentOS 6 或 7 的机器

2、两块分别配有本地 IP 和外网 IP 的网卡

我们需要为两个网卡都分配 IP 地址,一个本地网络的 IP(由我们的网络管理员提供),另一个是互联网 IP(由 ISP 提供)。 像这样:

Ifcfg-en0s3 192.168.1.1 (LAN IP address)
Ifcfg-en0s5 10.1.1.1  (WAN IP address)

注意 不同 Linux 发行版的网卡名是不一样的。

现在准备工作完成了,可以进行配置了。

步骤 1 启用 IP 转发

第一步,我们启用 IP 转发。 这一步在 RHEL/CentOS 6 和 7 上是相同的。 运行

$ sysctl -w net.ipv4.ip_forward=1

但是这样会在系统重启后恢复。要让重启后依然生效需要打开

$ vi /etc/sysctl.conf

然后输入下面内容,

net.ipv4.ip_forward = 1

保存并退出。现在系统就启用 IP 转发了。

步骤 2 配置 IPtables/Firewalld 的规则

下一步我们需要启动 IPtables/firewalld 服务并配置 NAT 规则,

$ systemctl start firewalld (For Centos/RHEL 7)
$ service iptables start  (For Centos/RHEL 6)

然后运行下面命令来配置防火墙的 NAT 规则:

CentOS/RHEL 6
$ iptables -t nat -A POSTROUTING -o XXXX -j MASQUERADE
$ service iptables restart 
CentOS/RHEL 7
$ firewall-cmd  -permanent -direct -passthrough ipv4 -t nat -I POSTROUTING -o XXXX -j MASQUERADE -s 192.168.1.0/24
$ systemctl restart firewalld

这里,XXXX 是配置有外网 IP 的那个网卡名称。 这就将 Linux 机器配置成了路由器了, 下面我们就可以配置客户端然后测试路由器了。

步骤 3 配置客户端

要测试路由器,我们需要在客户端的网关设置成内网 IP, 本例中就是 192.168.1.1。 因此不管客户机是 Windows 还是 Linux, 请先确保网关是 192.168.1.1。 完成后, 打开终端或命令行并 ping 一个网站来测试客户端是否能访问互联网了:

$ ping google.com

我们也可以通过网络浏览器访问网站的方式来检查。


via: http://linuxtechlab.com/turning-centosrhel-6-7-machine-router/

作者:Shusain 译者:lujun9972 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

之前的文章中,我们介绍了如何使用 Quagga 将 CentOS 服务器变成一个 BGP 路由器,也介绍了 BGP 对等体和前缀交换设置。在本教程中,我们将重点放在如何使用 前缀列表 prefix-list 路由映射 route-map 来分别控制数据注入和数据输出。

之前的文章已经说过,BGP 的路由判定是基于前缀的收取和前缀的广播。为避免错误的路由,你需要使用一些过滤机制来控制这些前缀的收发。举个例子,如果你的一个 BGP 邻居开始广播一个本不属于它们的前缀,而你也将错就错地接收了这些不正常前缀,并且也将它转发到网络上,这个转发过程会不断进行下去,永不停止(所谓的“黑洞”就这样产生了)。所以确保这样的前缀不会被收到,或者不会转发到任何网络,要达到这个目的,你可以使用前缀列表和路由映射。前者是基于前缀的过滤机制,后者是更为常用的基于前缀的策略,可用于精调过滤机制。

本文会向你展示如何在 Quagga 中使用前缀列表和路由映射。

拓扑和需求

本教程使用下面的拓扑结构。

服务供应商A和供应商B已经将对方设置成为 eBGP 对等体,实现互相通信。他们的自治系统号和前缀分别如下所示。

  • 对等区段: 192.168.1.0/24
  • 服务供应商A: 自治系统号 100, 前缀 10.10.0.0/16
  • 服务供应商B: 自治系统号 200, 前缀 10.20.0.0/16

在这个场景中,供应商B只想从A接收 10.10.10.0/23, 10.10.10.0/24 和 10.10.11.0/24 三个前缀。

安装 Quagga 和设置 BGP 对等体

之前的教程中,我们已经写了安装 Quagga 和设置 BGP 对等体的方法,所以这里就不再详细说明了,只简单介绍下 BGP 配置和前缀广播:

上图说明 BGP 对等体已经开启。Router-A 在向 router-B 广播多个前缀,而 Router-B 也在向 router-A 广播一个前缀 10.20.0.0/16。两个路由器都能正确无误地收发前缀。

创建前缀列表

路由器可以使用 ACL 或前缀列表来过滤一个前缀。前缀列表比 ACL 更常用,因为前者处理步骤少,而且易于创建和维护。

ip prefix-list DEMO-PRFX permit 192.168.0.0/23

上面的命令创建了名为“DEMO-FRFX”的前缀列表,只允许存在 192.168.0.0/23 这个前缀。

前缀列表的另一个强大功能是支持子网掩码区间,请看下面的例子:

ip prefix-list DEMO-PRFX permit 192.168.0.0/23 le 24

这个命令创建的前缀列表包含在 192.168.0.0/23 和 /24 之间的前缀,分别是 192.168.0.0/23, 192.168.0.0/24 和 192.168.1.0/24。运算符“le”表示小于等于,你也可以使用“ge”表示大于等于。

一个前缀列表语句可以有多个允许或拒绝操作。每个语句都自动或手动地分配有一个序列号。

如果存在多个前缀列表语句,则这些语句会按序列号顺序被依次执行。在配置前缀列表的时候,我们需要注意在所有前缀列表语句之后是隐性拒绝语句,就是说凡是不被明显允许的,都会被拒绝。

如果要设置成允许所有前缀,前缀列表语句设置如下:

ip prefix-list DEMO-PRFX permit 0.0.0.0/0 le 32

我们已经知道如何创建前缀列表语句了,现在我们要创建一个名为“PRFX-LST”的前缀列表,来满足我们实验场景的需求。

router-b# conf t
router-b(config)# ip prefix-list PRFX-LST permit 10.10.10.0/23 le 24

创建路由映射

除了前缀列表和 ACL,这里还有另一种机制,叫做路由映射,也可以在 BGP 路由器中控制前缀。事实上,路由映射针对前缀匹配的微调效果比前缀列表和 ACL 都强。

与前缀列表类似,路由映射语句也可以指定允许和拒绝操作,也需要分配一个序列号。每个路由匹配可以有多个允许或拒绝操作。例如:

route-map DEMO-RMAP permit 10

上面的语句创建了名为“DEMO-RMAP”的路由映射,添加序列号为10的允许操作。现在我们在这个序列号所对应的路由映射下使用 match 命令进行匹配。

router-a(config-route-map)# match (press ? in the keyboard)

  as-path       Match BGP AS path list
  community     Match BGP community list
  extcommunity  Match BGP/VPN extended community list
  interface     match first hop interface of route
  ip            IP information
  ipv6          IPv6 information
  metric        Match metric of route
  origin        BGP origin code
  peer          Match peer address
  probability   Match portion of routes defined by percentage value
  tag           Match tag of route

如你所见,路由映射可以匹配很多属性,在本教程中匹配的是前缀。

route-map DEMO-RMAP permit 10
match ip address prefix-list DEMO-PRFX

这个 match 命令会匹配之前建好的前缀列表中允许的 IP 地址(也就是前缀 192.168.0.0/23, 192.168.0.0/24 和 192.168.1.0/24)。

接下来,我们可以使用 set 命令来修改这些属性。例子如下:

route-map DEMO-RMAP permit 10
match ip address prefix-list DEMO-PRFX
set (press ? in keyboard)

  aggregator          BGP aggregator attribute
  as-path             Transform BGP AS-path attribute
  atomic-aggregate    BGP atomic aggregate attribute
  comm-list           set BGP community list (for deletion)
  community           BGP community attribute
  extcommunity        BGP extended community attribute
  forwarding-address  Forwarding Address
  ip                  IP information
  ipv6                IPv6 information
  local-preference    BGP local preference path attribute
  metric              Metric value for destination routing protocol
  metric-type         Type of metric
  origin              BGP origin code
  originator-id       BGP originator ID attribute
  src                 src address for route
  tag                 Tag value for routing protocol
  vpnv4               VPNv4 information
  weight              BGP weight for routing table

如你所见,set 命令也可以修改很多属性。为了作个示范,我们修改一下 BGP 的 local-preference 这个属性。

route-map DEMO-RMAP permit 10
match ip address prefix-list DEMO-PRFX
set local-preference 500

如同前缀列表,路由映射语句的末尾也有隐性拒绝操作。所以我们需要添加另外一个允许语句(使用序列号20)来允许所有前缀。

route-map DEMO-RMAP permit 10
match ip address prefix-list DEMO-PRFX
set local-preference 500
!
route-map DEMO-RMAP permit 20

序列号20未指定任何匹配命令,所以默认匹配所有前缀。在这个路由映射语句中,所有的前缀都被允许。

回想一下,我们的需求是只允许或只拒绝一些前缀,所以上面的 set 命令不应该存在于这个场景中。我们只需要一个允许语句,如下如示:

router-b# conf t
router-b(config)# route-map RMAP permit 10
router-b(config-route-map)# match ip address prefix-list PRFX-LST

这个路由映射才是我们需要的效果。

应用路由映射

注意,在被应用于一个接口或一个 BGP 邻居之前,ACL、前缀列表和路由映射都不会生效。与 ACL 和前缀列表一样,一条路由映射语句也能被多个接口或邻居使用。然而,一个接口或一个邻居只能有一条路由映射语句应用于输入端,以及一条路由映射语句应用于输出端。

下面我们将这条路由映射语句应用于 router-B 的 BGP 配置,为 router-B 的邻居 192.168.1.1 设置输入前缀广播。

router-b# conf terminal
router-b(config)# router bgp 200
router-b(config-router)# neighbor 192.168.1.1 route-map RMAP in

现在检查下广播路由和收取路由。

显示广播路由的命令:

show ip bgp neighbor-IP advertised-routes

显示收取路由的命令:

show ip bgp neighbor-IP routes

可以看到,router-A 有4条路由前缀到达 router-B,而 router-B 只接收3条。查看一下范围,我们就能知道只有被路由映射允许的前缀才能在 router-B 上显示出来,其他的前缀一概丢弃。

小提示:如果接收前缀内容没有刷新,试试重置下 BGP 会话,使用这个命令:clear ip bgp neighbor-IP。本教程中命令如下:

clear ip bgp 192.168.1.1

我们能看到系统已经满足我们的要求了。接下来我们可以在 router-A 和 router-B 上创建相似的前缀列表和路由映射语句来更好地控制输入输出的前缀。

这里把配置过程总结一下,方便查看。

router bgp 200
network 10.20.0.0/16
neighbor 192.168.1.1 remote-as 100
neighbor 192.168.1.1 route-map RMAP in
!
ip prefix-list PRFX-LST seq 5 permit 10.10.10.0/23 le 24
!
route-map RMAP permit 10
match ip address prefix-list PRFX-LST

总结

在本教程中我们演示了如何在 Quagga 中设置前缀列表和路由映射来过滤 BGP 路由。我们也展示了如何将前缀列表结合进路由映射来进行输入前缀的微调功能。你可以参考这些方法来设置满足自己需求的前缀列表和路由映射。这些工具是保护网络免受路由毒化和来自 bogon 路由(LCTT 译注:指不该出现在internet路由表中的地址)的广播。

希望本文对你有帮助。


via: http://xmodulo.com/filter-bgp-routes-quagga-bgp-router.html

作者:Sarmed Rahman 译者:bazz2 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

在之前的教程中,我们演示了如何使用Quagga建立一个完备的BGP路由器和配置前缀过滤。在本教程中,我们会向你演示如何创建IPv6 BGP对等体并通过BGP通告IPv6前缀。同时我们也将演示如何使用前缀列表和路由映射特性来过滤通告的或者获取到的IPv6前缀。

拓扑

教程中,我们主要参考如下拓扑。

服务供应商A和B希望在他们之间建立一个IPv6的BGP对等体。他们的IPv6地址和AS信息如下所示。

  • 对等体IP块: 2001:DB8:3::/64
  • 供应商A: AS 100, 2001:DB8:1::/48
  • 供应商B: AS 200, 2001:DB8:2::/48

CentOS/RHEL安装Quagga

如果Quagga还没有安装,我们可以先使用yum安装。

# yum install quagga 

在CentOS/RHEL 7,SELinux策略会默认的阻止对于/usr/sbin/zebra配置目录的写操作,这会对我们将要介绍的安装操作有所影响。因此我们需要像下面这样关闭这个策略。如果你使用的是CentOS/RHEL 6可以跳过这一步。

# setsebool -P zebra_write_config 1 

创建配置文件

在安装过后,我们先创建配置文件zebra/bgpd作为配置流程的开始。

# cp /usr/share/doc/quagga-XXXXX/zebra.conf.sample /etc/quagga/zebra.conf
# cp /usr/share/doc/quagga-XXXXX/bgpd.conf.sample /etc/quagga/bgpd.conf

然后,允许这些服务开机自启。

在 CentOS/RHEL 6:

# service zebra start; service bgpd start
# chkconfig zebra on; chkconfig bgpd on 

在 CentOS/RHEL 7:

# systemctl start zebra; systemctl start bgpd
# systemctl enable zebra; systmectl enable bgpd 

Quagga内部提供一个叫作vtysh的shell,其界面与那些主流路由厂商Cisco或Juniper十分相似。启动vtysh shell命令行:

# vtysh

提示符将改为:

router-a#

router-b# 

在教程的其余部分,这个提示可以表明你正身处在哪个路由的vtysh shell中。

为Zebra指定日志文件

来为Zebra配置日志文件,这会有助于调试。

首先,进入全局配置模式通过输入:

router-a# configure terminal 

提示符将变更成:

router-a(config)#

指定日志文件的位置。然后退出配置模式:

router-a(config)# log file /var/log/quagga/quagga.log
router-a(config)# exit 

保存配置通过:

router-a# write 

配置接口IP地址

现在,让我们为Quagga的物理接口配置IP地址。

首先,查看一下vtysh中现有的接口。

router-a# show interfaces 

Interface eth0 is up, line protocol detection is disabled
## OUTPUT TRUNCATED ###
Interface eth1 is up, line protocol detection is disabled
## OUTPUT TRUNCATED ##

现在我们配置IPv6地址。

router-a# conf terminal
router-a(config)# interface eth0
router-a(config-if)# ipv6 address 2001:db8:3::1/64
router-a(config-if)# interface eth1
router-a(config-if)# ipv6 address 2001:db8:1::1/64

在路由B上采用同样的方式分配IPv6地址。我将配置汇总成如下。

router-b# show running-config 

interface eth0
ipv6 address 2001:db8:3::2/64

interface eth1
ipv6 address 2001:db8:2::1/64

由于两台路由的eth0端口同属一个子网,即2001:DB8:3::/64,你应该可以相互ping通。在保证ping通的情况下,我们开始下面的内容。

router-a# ping ipv6 2001:db8:3::2 

PING 2001:db8:3::2(2001:db8:3::2) 56 data bytes
64 bytes from 2001:db8:3::2: icmp_seq=1 ttl=64 time=3.20 ms
64 bytes from 2001:db8:3::2: icmp_seq=2 ttl=64 time=1.05 ms

步骤 1: IPv6 BGP 对等体

本段,我们将在两个路由之间配置IPv6 BGP。首先,我们在路由A上指定BGP邻居。

router-a# conf t
router-a(config)# router bgp 100
router-a(config-router)# no auto-summary
router-a(config-router)# no synchronization
router-a(config-router)# neighbor 2001:DB8:3::2 remote-as 200

然后,我们定义IPv6的地址族。在地址族中,我们需要定义要通告的网段,并激活邻居。

router-a(config-router)# address-family ipv6
router-a(config-router-af)# network 2001:DB8:1::/48
router-a(config-router-af)# neighbor 2001:DB8:3::2 activate

我们在路由B上也实施相同的配置。这里提供我归总后的配置。

router-b# conf t
router-b(config)# router bgp 200
router-b(config-router)# no auto-summary
router-b(config-router)# no synchronization
router-b(config-router)# neighbor 2001:DB8:3::1 remote-as 100
router-b(config-router)# address-family ipv6
router-b(config-router-af)# network 2001:DB8:2::/48
router-b(config-router-af)# neighbor 2001:DB8:3::1 activate

如果一切顺利,在路由间将会形成一个IPv6 BGP会话。如果失败了,请确保在防火墙中开启了必要的端口(TCP 179)。

我们使用以下命令来确认IPv6 BGP会话的信息。

查看BGP汇总:

router-a# show bgp ipv6 unicast summary 

查看BGP通告的路由:

router-a# show bgp ipv6 neighbors <neighbor-IPv6-address> advertised-routes 

查看BGP获得的路由:

router-a# show bgp ipv6 neighbors <neighbor-IPv6-address> routes 

步骤 2: 过滤IPv6前缀

正如我们在上面看到的输出信息那样,路由间通告了他们完整的/48 IPv6前缀。出于演示的目的,我们会考虑以下要求。

  • Router-B将通告一个/64前缀,一个/56前缀,和一个完整的/48前缀.
  • Router-A将接受任由B提供的何形式的IPv6前缀,其中包含有/56和/64之间的网络掩码长度。

我们将根据需要过滤的前缀,来使用路由器的前缀列表和路由映射。

为路由B修改通告的前缀

目前,路由B只通告一个/48前缀。我们修改路由B的BGP配置使它可以通告额外的/56和/64前缀。

router-b# conf t
router-b(config)# router bgp 200
router-b(config-router)# address-family ipv6
router-b(config-router-af)# network 2001:DB8:2::/56
router-b(config-router-af)# network 2001:DB8:2::/64

我们将路由A上验证了所有的前缀都获得到了。

太好了!我们在路由A上收到了所有的前缀,那么我们可以更进一步创建前缀列表和路由映射来过滤这些前缀。

创建前缀列表

就像在上则教程中描述的那样,前缀列表是一种机制用来匹配带有子网长度的IP地址前缀。按照我们指定的需求,我们需要在路由A的前缀列表中创建一则必要的条目。

router-a# conf t
router-a(config)# ipv6 prefix-list FILTER-IPV6-PRFX permit 2001:DB8:2::/56 le 64

以上的命令会创建一个名为'FILTER-IPV6-PRFX'的前缀列表,用以匹配任何2001:DB8:2::池内掩码在56和64之间的所有前缀。

创建并应用路由映射

现在已经在前缀列表中创建了条目,我们也应该相应的创建一条使用此条目的路由映射规则了。

router-a# conf t
router-a(config)# route-map FILTER-IPV6-RMAP permit 10
router-a(config-route-map)# match ipv6 address prefix-list FILTER-IPV6-PRFX

以上的命令会创建一条名为'FILTER-IPV6-RMAP'的路由映射规则。这则规则将会允许与之前在前缀列表中创建'FILTER-IPV6-PRFX'所匹配的IPv6

要记住路由映射规则只有在应用在邻居或者端口的指定方向时才有效。我们将把路由映射应用到BGP的邻居配置中。我们将路由映射应用于入方向,作为进入路由端的前缀过滤器。

router-a# conf t
router-a(config)# router bgp 100
router-a(config-router)# address-family ipv6
router-a(config-router-af)# neighbor 2001:DB8:3::2 route-map FILTER-IPV6-RMAP in

现在我们在路由A上再查看一边获得到的路由,我们应该只能看见两个被允许的前缀了。

注意: 你可能需要重置BGP会话来刷新路由表。

所有IPv6的BGP会话可以使用以下的命令重启:

router-a# clear bgp ipv6 * 

我汇总了两个路由的配置,并做成了一张清晰的图片以便阅读。

总结

总结一下,这篇教程重点在于如何创建BGP对等体和IPv6的过滤。我们演示了如何向邻居BGP路由通告IPv6前缀,和如何过滤通告前缀或获得的通告。需要注意,本教程使用的过程可能会对网络供应商的网络运作有所影响,请谨慎参考。

希望这些对你有用。


via: http://xmodulo.com/ipv6-bgp-peering-filtering-quagga-bgp-router.html

作者:Sarmed Rahman 译者:martin2011qi 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

之前的教程中,我对如何简单地使用Quagga把CentOS系统变成一个不折不扣地OSPF路由器做了一些介绍。Quagga是一个开源路由软件套件。在这个教程中,我将会重点讲讲如何把一个Linux系统变成一个BGP路由器,还是使用Quagga,演示如何建立BGP与其它BGP路由器对等。

在我们进入细节之前,一些BGP的背景知识还是必要的。边界网关协议(即BGP)是互联网的域间路由协议的实际标准。在BGP术语中,全球互联网是由成千上万相关联的自治系统(AS)组成,其中每一个AS代表每一个特定运营商提供的一个网络管理域(据说,美国前总统乔治.布什都有自己的 AS 编号)。

为了使其网络在全球范围内路由可达,每一个AS需要知道如何在英特网中到达其它的AS。这时候就需要BGP出来扮演这个角色了。BGP是一个AS去与相邻的AS交换路由信息的语言。这些路由信息通常被称为BGP线路或者BGP前缀。包括AS号(ASN;全球唯一号码)以及相关的IP地址块。一旦所有的BGP线路被当地的BGP路由表学习和记录,每一个AS将会知道如何到达互联网的任何公网IP。

在不同域(AS)之间路由的能力是BGP被称为外部网关协议(EGP)或者域间协议的主要原因。就如一些路由协议,例如OSPF、IS-IS、RIP和EIGRP都是内部网关协议(IGPs)或者域内路由协议,用于处理一个域内的路由.

测试方案

在这个教程中,让我们来使用以下拓扑。

我们假设运营商A想要建立一个BGP来与运营商B对等交换路由。它们的AS号和IP地址空间的细节如下所示:

  • 运营商 A: ASN (100), IP地址空间 (100.100.0.0/22), 分配给BGP路由器eth1网卡的IP地址(100.100.1.1)
  • 运营商 B: ASN (200), IP地址空间 (200.200.0.0/22), 分配给BGP路由器eth1网卡的IP地址(200.200.1.1)

路由器A和路由器B使用100.100.0.0/30子网来连接到对方。从理论上来说,任何子网从运营商那里都是可达的、可互连的。在真实场景中,建议使用掩码为30位的公网IP地址空间来实现运营商A和运营商B之间的连通。

在 CentOS中安装Quagga

如果Quagga还没安装好,我们可以使用yum来安装Quagga。

# yum install quagga 

如果你正在使用的是CentOS7系统,你需要应用一下策略来设置SELinux。否则,SElinux将会阻止Zebra守护进程写入它的配置目录。如果你正在使用的是CentOS6,你可以跳过这一步。

# setsebool -P zebra_write_config 1 

Quagga软件套件包含几个守护进程,这些进程可以协同工作。关于BGP路由,我们将把重点放在建立以下2个守护进程。

  • Zebra:一个核心守护进程用于内核接口和静态路由.
  • BGPd:一个BGP守护进程.

配置日志记录

在Quagga被安装后,下一步就是配置Zebra来管理BGP路由器的网络接口。我们通过创建一个Zebra配置文件和启用日志记录来开始第一步。

# cp /usr/share/doc/quagga-XXXXX/zebra.conf.sample /etc/quagga/zebra.conf 

在CentOS6系统中:

# service zebra start
# chkconfig zebra on

在CentOS7系统中:

# systemctl start zebra
# systemctl enable zebra 

Quagga提供了一个叫做vtysh特有的命令行工具,你可以输入与路由器厂商(例如Cisco和Juniper)兼容和支持的命令。我们将使用vtysh shell来配置BGP路由在教程的其余部分。

启动vtysh shell 命令,输入:

# vtysh

提示将被改成该主机名,这表明你是在vtysh shell中。

Router-A#

现在我们将使用以下命令来为Zebra配置日志文件:

Router-A# configure terminal
Router-A(config)# log file /var/log/quagga/quagga.log
Router-A(config)# exit

永久保存Zebra配置:

Router-A# write

在路由器B操作同样的步骤。

配置对等的IP地址

下一步,我们将在可用的接口上配置对等的IP地址。

Router-A# show interface   #显示接口信息

Interface eth0 is up, line protocol detection is disabled
. . . . .
Interface eth1 is up, line protocol detection is disabled
. . . . .

配置eth0接口的参数:

site-A-RTR# configure terminal
site-A-RTR(config)# interface eth0
site-A-RTR(config-if)# ip address 100.100.0.1/30
site-A-RTR(config-if)# description "to Router-B"
site-A-RTR(config-if)# no shutdown
site-A-RTR(config-if)# exit

继续配置eth1接口的参数:

site-A-RTR(config)# interface eth1
site-A-RTR(config-if)# ip address 100.100.1.1/24
site-A-RTR(config-if)# description "test ip from provider A network"
site-A-RTR(config-if)# no shutdown
site-A-RTR(config-if)# exit

现在确认配置:

Router-A# show interface 

Interface eth0 is up, line protocol detection is disabled
  Description: "to Router-B"
  inet 100.100.0.1/30 broadcast 100.100.0.3
Interface eth1 is up, line protocol detection is disabled
  Description: "test ip from provider A network"
  inet 100.100.1.1/24 broadcast 100.100.1.255

Router-A# show interface description   #显示接口描述

Interface       Status  Protocol  Description
eth0            up      unknown   "to Router-B"
eth1            up      unknown   "test ip from provider A network"

如果一切看起来正常,别忘记保存配置。

Router-A# write

同样地,在路由器B重复一次配置。

在我们继续下一步之前,确认下彼此的IP是可以ping通的。

Router-A# ping 100.100.0.2 

PING 100.100.0.2 (100.100.0.2) 56(84) bytes of data.
64 bytes from 100.100.0.2: icmp_seq=1 ttl=64 time=0.616 ms

下一步,我们将继续配置BGP对等和前缀设置。

配置BGP对等

Quagga守护进程负责BGP的服务叫bgpd。首先我们来准备它的配置文件。

# cp /usr/share/doc/quagga-XXXXXXX/bgpd.conf.sample /etc/quagga/bgpd.conf 

在CentOS6系统中:

# service bgpd start
# chkconfig bgpd on

在CentOS7中:

# systemctl start bgpd
# systemctl enable bgpd

现在,让我们来进入Quagga 的shell。

# vtysh

第一步,我们要确认当前没有已经配置的BGP会话。在一些版本,我们可能会发现一个AS号为7675的BGP会话。由于我们不需要这个会话,所以把它移除。

Router-A# show running-config 

... ... ...
router bgp 7675
 bgp router-id 200.200.1.1
... ... ... 

我们将移除一些预先配置好的BGP会话,并建立我们所需的会话取而代之。

Router-A# configure terminal
Router-A(config)# no router bgp 7675
Router-A(config)# router bgp 100
Router-A(config)# no auto-summary
Router-A(config)# no synchronizaiton
Router-A(config-router)# neighbor 100.100.0.2 remote-as 200
Router-A(config-router)# neighbor 100.100.0.2 description "provider B"
Router-A(config-router)# exit
Router-A(config)# exit
Router-A# write 

路由器B将用同样的方式来进行配置,以下配置提供作为参考。

Router-B# configure terminal
Router-B(config)# no router bgp 7675
Router-B(config)# router bgp 200
Router-B(config)# no auto-summary
Router-B(config)# no synchronizaiton
Router-B(config-router)# neighbor 100.100.0.1 remote-as 100
Router-B(config-router)# neighbor 100.100.0.1 description "provider A"
Router-B(config-router)# exit
Router-B(config)# exit
Router-B# write 

当相关的路由器都被配置好,两台路由器之间的对等将被建立。现在让我们通过运行下面的命令来确认:

Router-A# show ip bgp summary 

从输出中,我们可以看到"State/PfxRcd"部分。如果对等关闭,输出将会显示"Idle"或者"Active'。请记住,单词'Active'这个词在路由器中总是不好的意思。它意味着路由器正在积极地寻找邻居、前缀或者路由。当对等是up状态,"State/PfxRcd"下的输出状态将会从特殊邻居接收到前缀号。

在这个例子的输出中,BGP对等只是在AS100和AS200之间呈up状态。因此没有前缀被更改,所以最右边列的数值是0。

配置前缀通告

正如一开始提到,AS 100将以100.100.0.0/22作为通告,在我们的例子中AS 200将同样以200.200.0.0/22作为通告。这些前缀需要被添加到BGP配置如下。

在路由器-A中:

Router-A# configure terminal
Router-A(config)# router bgp 100
Router-A(config)# network 100.100.0.0/22
Router-A(config)# exit
Router-A# write

在路由器-B中:

Router-B# configure terminal
Router-B(config)# router bgp 200
Router-B(config)# network 200.200.0.0/22
Router-B(config)# exit
Router-B# write 

在这一点上,两个路由器会根据需要开始通告前缀。

测试前缀通告

首先,让我们来确认前缀的数量是否被改变了。

Router-A# show ip bgp summary 

为了查看所接收的更多前缀细节,我们可以使用以下命令,这个命令用于显示邻居100.100.0.2所接收到的前缀总数。

 Router-A# show ip bgp neighbors 100.100.0.2 advertised-routes 

查看哪一个前缀是我们从邻居接收到的:

Router-A# show ip bgp neighbors 100.100.0.2 routes 

我们也可以查看所有的BGP路由器:

Router-A# show ip bgp 

以上的命令都可以被用于检查哪个路由器通过BGP在路由器表中被学习到。

Router-A# show ip route 

代码: K - 内核路由, C - 已链接 , S - 静态 , R - 路由信息协议 , O - 开放式最短路径优先协议,

       I - 中间系统到中间系统的路由选择协议, B - 边界网关协议, > - 选择路由, * - FIB 路由

C>* 100.100.0.0/30 is directly connected, eth0
C>* 100.100.1.0/24 is directly connected, eth1
B>* 200.200.0.0/22 [20/0] via 100.100.0.2, eth0, 00:06:45

Router-A# show ip route bgp 

B>* 200.200.0.0/22 [20/0] via 100.100.0.2, eth0, 00:08:13

BGP学习到的路由也将会在Linux路由表中出现。

[root@Router-A~]# ip route 

100.100.0.0/30 dev eth0  proto kernel  scope link  src 100.100.0.1
100.100.1.0/24 dev eth1  proto kernel  scope link  src 100.100.1.1
200.200.0.0/22 via 100.100.0.2 dev eth0  proto zebra

最后,我们将使用ping命令来测试连通。结果将成功ping通。

[root@Router-A~]# ping 200.200.1.1 -c 2

总而言之,本教程将重点放在如何在CentOS系统中运行一个基本的BGP路由器。这个教程让你开始学习BGP的配置,一些更高级的设置例如设置过滤器、BGP属性调整、本地优先级和预先路径准备等,我将会在后续的教程中覆盖这些主题。

希望这篇教程能给大家一些帮助。


via: http://xmodulo.com/centos-bgp-router-quagga.html

作者:Sarmed Rahman 译者:disylee 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

Quagga是一个开源路由软件套件,可以将Linux变成支持如RIP、OSPF、BGP和IS-IS等主要路由协议的路由器。它具有对IPv4和IPv6的完整支持,并支持路由/前缀过滤。Quagga可以是你生命中的救星,以防你的生产路由器一旦宕机,而你没有备用的设备而只能等待更换。通过适当的配置,Quagga甚至可以作为生产路由器。

本教程中,我们将连接假设之间具有专线连接的两个分支机构网络(例如,192.168.1.0/24和172.17.1.0/24)。

我们的CentOS位于所述专用链路的两端。两台主机名分别设置为“site-A-RTR”和“site-B-RTR'。下面是IP地址的详细信息。

  • Site-A: 192.168.1.0/24
  • Site-B: 172.16.1.0/24
  • 两个 Linux 路由器之间的对等网络: 10.10.10.0/30

Quagga包括了几个协同工作的守护进程。在本教程中,我们将重点建立以下守护进程。

  1. Zebra: 核心守护进程,负责内核接口和静态路由。
  2. Ospfd: IPv4 OSPF 守护进程。

在CentOS上安装Quagga

我们使用yum安装Quagga。

# yum install quagga 

在CentOS7,SELinux默认会阻止quagga将配置文件写到/usr/sbin/zebra。这个SELinux策略会干扰我们接下来要介绍的安装过程,所以我们要禁用此策略。对于这一点,无论是关闭SELinux(这里不推荐),还是如下启用“zebrawriteconfig”都可以。如果你使用的是CentOS 6的请跳过此步骤。

# setsebool -P zebra_write_config 1 

如果没有做这个修改,在我们尝试在Quagga命令行中保存配置的时候看到如下错误。

Can't open configuration file /etc/quagga/zebra.conf.OS1Uu5.

安装完Quagga后,我们要配置必要的对等IP地址,并更新OSPF设置。Quagga自带了一个命令行称为vtysh。vtysh里面用到的Quagga命令与主要的路由器厂商如思科和Juniper是相似的。

步骤 1: 配置 Zebra

我们首先创建Zebra配置文件,并启用Zebra守护进程。

# cp /usr/share/doc/quagga-XXXXX/zebra.conf.sample /etc/quagga/zebra.conf
# service zebra start
# chkconfig zebra on 

启动vtysh命令行:

# vtysh 

首先,我们为Zebra配置日志文件。输入下面的命令进入vtysh的全局配置模式:

site-A-RTR# configure terminal

指定日志文件位置,接着退出模式:

site-A-RTR(config)# log file /var/log/quagga/quagga.log
site-A-RTR(config)# exit

永久保存配置:

site-A-RTR# write

接下来,我们要确定可用的接口并按需配置它们的IP地址。

site-A-RTR# show interface 

Interface eth0 is up, line protocol detection is disabled
. . . . .
Interface eth1 is up, line protocol detection is disabled
. . . . .

配置eth0参数:

site-A-RTR# configure terminal
site-A-RTR(config)# interface eth0
site-A-RTR(config-if)# ip address 10.10.10.1/30
site-A-RTR(config-if)# description to-site-B
site-A-RTR(config-if)# no shutdown 

继续配置eth1参数:

site-A-RTR(config)# interface eth1
site-A-RTR(config-if)# ip address 192.168.1.1/24
site-A-RTR(config-if)# description to-site-A-LAN
site-A-RTR(config-if)# no shutdown 

现在验证配置:

site-A-RTR(config-if)# do show interface 

Interface eth0 is up, line protocol detection is disabled
. . . . .
  inet 10.10.10.1/30 broadcast 10.10.10.3
. . . . .
Interface eth1 is up, line protocol detection is disabled
. . . . .
  inet 192.168.1.1/24 broadcast 192.168.1.255
. . . . .

site-A-RTR(config-if)# do show interface description 

Interface      Status  Protocol  Description
eth0           up      unknown   to-site-B
eth1           up      unknown   to-site-A-LAN

永久保存配置:

site-A-RTR(config-if)# do write

在site-B上重复上面配置IP地址的步骤。

如果一切顺利,你应该可以在site-A的服务器上ping通site-B上的对等IP地址10.10.10.2了。

注意:一旦Zebra的守护进程启动了,在vtysh命令行中的任何改变都会立即生效。因此没有必要在更改配置后重启Zebra守护进程。

步骤 2: 配置OSPF

我们首先创建OSPF配置文件,并启动OSPF守护进程:

# cp /usr/share/doc/quagga-XXXXX/ospfd.conf.sample /etc/quagga/ospfd.conf
# service ospfd start
# chkconfig ospfd on 

现在启动vtysh命令行来继续OSPF配置:

# vtysh

输入路由配置模式:

site-A-RTR# configure terminal
site-A-RTR(config)# router ospf

可选配置路由id:

site-A-RTR(config-router)# router-id 10.10.10.1

添加在OSPF中的网络:

site-A-RTR(config-router)# network 10.10.10.0/30 area 0
site-A-RTR(config-router)# network 192.168.1.0/24 area 0

永久保存配置:

site-A-RTR(config-router)# do write

在site-B上重复和上面相似的OSPF配置:

site-B-RTR(config-router)# network 10.10.10.0/30 area 0
site-B-RTR(config-router)# network 172.16.1.0/24 area 0
site-B-RTR(config-router)# do write 

OSPF的邻居现在应该启动了。只要ospfd在运行,通过vtysh的任何OSPF相关配置的改变都会立即生效而不必重启ospfd。

下一节,我们会验证我们的Quagga设置。

验证

1. 通过ping测试

首先你应该可以从site-A ping同site-B的LAN子网。确保你的防火墙没有阻止ping的流量。

[root@site-A-RTR ~]# ping 172.16.1.1 -c 2 

2. 检查路由表

必要的路由应该同时出现在内核与Quagga理由表中。

[root@site-A-RTR ~]# ip route 

10.10.10.0/30 dev eth0  proto kernel  scope link  src 10.10.10.1
172.16.1.0/30 via 10.10.10.2 dev eth0  proto zebra  metric 20
192.168.1.0/24 dev eth1  proto kernel  scope link  src 192.168.1.1

[root@site-A-RTR ~]# vtysh
site-A-RTR# show ip route 

Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,
       I - ISIS, B - BGP, > - selected route, * - FIB route

O   10.10.10.0/30 [110/10] is directly connected, eth0, 00:14:29
C>* 10.10.10.0/30 is directly connected, eth0
C>* 127.0.0.0/8 is directly connected, lo
O>* 172.16.1.0/30 [110/20] via 10.10.10.2, eth0, 00:14:14
C>* 192.168.1.0/24 is directly connected, eth1

3. 验证OSPF邻居和路由

在vtysh命令行中,你可以检查必要的邻居是否在线与是否已经学习了合适的路由。

[root@site-A-RTR ~]# vtysh
site-A-RTR# show ip ospf neighbor 

本教程中,我们将重点放在使用Quagga配置基本的OSPF。在一般情况下,Quagga能让我们能够轻松在一台普通的Linux机器上配置动态路由协议,如OSPF、RIP或BGP。启用了Quagga的机器可以与你网络中的其他路由器进行通信和交换路由信息。由于它支持主要的开放标准的路由协议,它或许是许多情况下的首选。更重要的是,Quagga的命令行界面与主要路由器厂商如思科和Juniper几乎是相同的,这使得部署和维护Quagga机器变得非常容易。

希望这些对你们有帮助。


via: http://xmodulo.com/turn-centos-box-into-ospf-router-quagga.html

作者:Sarmed Rahman 译者:geekpi 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

在本教程中,我将解释多个设备怎样在linux下共享一个网络连接。目前无线路由器已经成为主流的消费品,从而解决了本文这一问题。这里假设你家中并没有一台无线路由器,不过,你却有一台已经有"猫"和有线网卡的的linux主机。"猫"是以动态公有IP地址的模式连接到互联网,主机的网卡连接到你的交换机或者集线器。其他设备(如linux或者windows的PC或者笔记本)以网桥的形式连接,并且没有连接到互联网。为了共享linux主机的互联网,你必须把主机转换成网关,以便它能实现从其他设备中传送和接受信息。

术语字汇

  • 私有IP地址(路由不可达地址)是一个被用于本地局域网的IP地址(在互联网中不可见)。
  • 公用IP地址(路由可达地址)是一个在互联网中可见的IP地址。
  • IP伪装是一项允许一系列机器通过MASQ网关连接互联网的功能。这些MASQ网关之外的机器在互联网中是不可见的。MASQ之后的机器中任何流入或流出的数据必须经过MASQ网关。
  • 网络地址转换(NAT)是一项通过IP伪装技术可以使私有IP地址访问互联网的功能。

Hardware Requirements

硬件要求

  • 一台有两个接口(一个公有IP地址和其他的私有IP地址)的linux主机,这个主机将被用作网关。
  • 一台或者多台拥有私有IP地址的linux/windows系统的PC或者笔记本。
  • 交换机/集线器(可选)。

教程步骤

接下来的过程需要在linux主机(用于共享的网关)上完成。

1、激活IP转发

为了设置网络共享,你需要在linux主机上更改一个内核参数来使能IP转发功能。内核启动参数设定在/etc/sysctl.conf文件中。

打开这个文件,定位到含有"# net.ipv4.ip\_forward = 0"的这一行,移除#号(即取消注释),然后将其值设置为1,改好之后应该和下面的一致。

net.ipv4.ip_forward = 1

你还要使激活IP转发功能生效,通过执行下面的命令:

$ sudo sysctl -w net.ipv4.ip_forward=1
$ sudo sysctl -p

2、NAT配置

另一个网络共享的重要部分是NAT配置,这可以通过使用iptables的命令,iptables包含四个防火墙的规则表:

  • FILTER (默认表格)
  • NAT
  • MANGLE
  • RAW

这个教程中我们将仅使用两个表格:FILTER和NAT表格。

首先,刷新所有活跃的防火墙的规则。

$ sudo iptables -X
$ sudo iptables -F
$ sudo iptables -t nat -X
$ sudo iptables -t nat -F

在输入表格中,你需要设置转发链(FORWARD)成可接受的(ACCEPT)目的地,因此所有通过主机的数据包将会被正确的处理。

$ sudo iptables -I INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
$ sudo iptables -I FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT

在NAT表中,你必须为你的WAN口启用IP伪装功能,我们假设WAN口协议是ppp0。为了在ppp0接口上使能IP伪造技术,我们使用以下的命令:

$ sudo iptables -t nat -I POSTROUTING -o ppp0 -j MASQUERADE

3、配置私有IP地址

在linux主机上的所有配置完成后,你需要配置其他设备(linux/windows的PC或笔记本)的DNS服务器以及默认网关,让它们的数据流可以指向linux主机。注意你不需要在linux主机上设置一个DNS服务器,从其他设备发出的每一个DNS请求都会通过上游的ISP自动转发到linux主机上。

如果你的其他设备上用的系统是linux,你可以通过以下命令来更改他们的默认网关和DNS服务器。假设你的网段是192.168.1.0/24的私有IP地址网段,linux主机上绑定的IP地址是192.168.1.1。

$ sudo ip route del default
$ sudo ip route add default via 192.168.1.1
$ sudo sh -c "echo 'nameserver 192.168.1.1' > /etc/resolv.conf"

如果还有其他的linux设备,那么你可以重复以上命令。

如果你有windows设备,你可以通过控制面板的网络连接属性来更改默认网关和DNS服务器。

4、完整的脚本

这是一个在linux主机上设置网络连接共享的一个完整的脚本。WAN口(ppp0协议)需要根据你具体的网络接口协议来替换。

$ sudo vi /usr/local/bin/ishare

#!/bin/bash

## Internet connection shating script

sysctl -w net.ipv4.ip_forward=1
sysctl -p
iptables -X
iptables -F
iptables -t nat -X
iptables -t nat -F
iptables -I INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
iptables -I FORWARD  -m state --state RELATED,ESTABLISHED -j ACCEPT
iptables -t nat -I POSTROUTING -o ppp0 -j MASQUERADE

保存以上的脚本为/usr/local/bin/ishare,然后添加可执行权限通过执行下面的命令。

$ sudo chmox +x /usr/local/bin/ishare

如果你需要这个脚本开机启动,你需要在/etc/rc.local文件中执行这个脚本,并在该文件中的"exit 0"之前添加下面一行。

/usr/local/bin/ishare

via: http://xmodulo.com/2014/06/internet-connection-sharing-iptables-linux.html

译者:yujianxuechuan 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出