标签 数据类型 下的文章

问题:

在读K&R版的The C Programming Language一书时,我在[介绍,第3页]看到这样一条说明:

因为C语言提供的数据类型和控制结构可以直接被大部分计算机系统所支持,所以在实现自包含程序时所需要的运行库文件一般很小。

这段黑体说明了什么?能否找到一个例子来说明C语言中的某种数据类型或控制结构不被某种计算机系统直接支持呢?

回答:

事实上,C语言中确实有不被直接支持的数据类型。

在许多嵌入式系统中,硬件上并没有浮点运算单元。因此,如果你写出下面的代码:

float x = 1.0f, y = 2.0f;
return x + y;

可能会被转化成下面这种形式:

unsigned x = 0x3f800000, y = 0x40000000;
return _float_add(x, y);

然后编译器或标准库必须提供'floatadd()'的具体实现,这会占用嵌入式系统的内存空间。依此去计算代码在某个微型系统(译者注:也就是指微型嵌入式系统)的实际字节数,也会发现有所增加。

另一个常见的例子是64位整型数(C语言标准中'long long'类型是1999年之后才出现的),这种类型在32位系统上也不能直接使用。古董级的SPARC系统则不支持整型乘法,所以在运行时必须提供乘法的实现。当然,还有一些其它例子。

其它语言

相比起来,其它编程语言有更加复杂的基本类型。

比如,Lisp中的symbol需要大量的运行时实现支持,就像Lua中的table、Python中的string、Fortran中的array,等等。在C语言中等价的类型通常要么不属于标准库(C语言没有标准symbol或table),要么更加简单,而且并不需要那么多的运行时支持(C语言中的array基本上就是指针,以NULL结尾的字符串实现起来也很简单)。

控制结构

异常处理是C语言中没有的一种控制结构。非局部的退出只有'setjmp()'和'longjmp()'两种,只能提供保存和恢复某些部分的处理器状态。相比之下,C++运行时环境必须先遍历函数调用栈,然后调用析构函数和异常处理函数。


via:stackoverflow

作者:Dietrich Epp 译者:KayGuoWhu 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

问题:

假如说,使用32位的整型会溢出,在不考虑使用长整型的情况下,如果我们只需要表示2的40次方范围内的数,是否可以利用某些40位长的数据类型来表示呢?这样的话,每个整型数就可以节省24位的空间。

如果可以,该怎么做?

需求是:我现在必须处理数以亿计的数字,所以在存储空间上受到了很大的限制。

回答:

可以是可以,但是……

这种方法的确可行,但这么做通常没什么意义(因为几乎没有程序需要处理多达十亿的数字):

#include <stdint.h> // 不要考虑使用long long类型
struct bad_idea
{
    uint64_t var : 40;
};

在这里,变量var占据40位大小,但是这是以生成代码时拥有非常低的运行效率来换取的(事实证明“非常”二字言过其实了——测试中程序开销仅仅增加了1%到2%,正如下面的测试时间所示),而且这么做通常没什么用。除非你还需要保存一个24位的值(或者是8位、16位的值),这样你皆可以它们放到同一个结构中。不然的话,因为对齐内存地址产生的开销会抵消这么做带来的好处。

在任何情况下,除非你是真的需要保存数以亿计的数字,否则这样做给内存消耗带来的好处是可以忽略不计的(但是为了处理这些位字段的额外代码量是不可忽略的!)。

说明:

在此期间,这个问题已经被更新了,是为了说明实际上确实有需要处理数以亿计数字的情况。假设,采取某些措施来防止因为结构体对齐和填充抵消好处(比如在后24位中存储其它的内容,或者使用多个8位来存储40位),那么这么做就变得有意义了。

如果有十亿个数,每个数都节省三个字节的空间,那么这么做就非常有用了。因为使用更小的空间存储要求更少的内存页,也就会产生更少的cache和TLB不命中和内存缺页(单个缺页会产生数以千万计的指令 [译者注:直译是这样,但语义说不通!])。

尽管上面提到的情况不足以充分利用到剩余的24位(它仅仅使用了40位部分),如果确实在剩余位中放入了有用的数据,那么使用类似下面的方法会使得这种思路就管理内存而言显得非常有用。

struct using_gaps
{
    uint64_t var           : 40;
    uint64_t useful_uint16 : 16;
    uint64_t char_or_bool  : 8;  
};

结构体大小和对齐长度等于64位整型的大小,所以只要使用得当就不会浪费空间,比如对一个保存10亿个数的数组使用这个结构(不考虑使用指定编译器的扩展)。如果你不会用到一个8位的值,那么你可以使用一个48位和16位的值(giving a bigger overflow margin)。

或者以牺牲可用性为代价,把8个64位的值放入这样的结构体中(或者使用40和64的组合使得其和满足320)。当然,在这种情况下,通过代码去访问数组结构体中的元素会变得非常麻烦(尽管一种方法是实现一个operator[]在功能上还原线性数组,隐藏结构体的复杂性)。

更新:

我写了一个快速测试工具,只是为了获得位字段的开销(以及伴随位字段引用的重载操作)。由于长度限制将代码发布在gcc.godbolt.org上,在本人64位Win7上的测试结果如下:

运行测试的数组大小为1048576
what       alloc   seq(w)  seq(r)  rand(w)  rand(r)  free
-----------------------------------------------------------
uint32_t    0      2       1       35       35       1
uint64_t    0      3       3       35       35       1
bad40_t     0      5       3       35       35       1
packed40_t  0      7       4       48       49       1

运行测试的数组大小为16777216
what        alloc  seq(w)  seq(r)  rand(w)  rand(r)  free
-----------------------------------------------------------
uint32_t    0      38      14      560      555      8
uint64_t    0      81      22      565      554      17
bad40_t     0      85      25      565      561      16
packed40_t  0      151     75      765      774      16

运行测试的数组大小为134177228
what        alloc  seq(w)  seq(r)  rand(w)  rand(r)  free
-----------------------------------------------------------
uint32_t    0      312     100     4480     4441     65
uint64_t    0      648     172     4482     4490     130
bad40_t     0      682     193     4573     4492     130
packed40_t  0      1164    552     6181     6176     130

我们看到,位字段的额外开销是微不足道的,但是当以友好的方式线性访问数据时伴随位字段引用的操作符重载产生的开销则相当显著(大概有3倍)。在另一方面,随机访问产生的开销则无足轻重。

这些时间表明简单的使用64位整型会更好,因为它们在整体性能上要比位字段好(尽管占用更多的内存),但是显然它们并没有考虑随着数据集增大带来的缺页开销。一旦程序内存超过RAM大小,结果可能就不一样了(未亲自考证)。


via:stackoverflow

作者:DamonMichael Kohne 译者:KayGuoWhu 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出