标签 内核 下的文章

自动测试工具

这里列出一些能满足不同需求的测试工具供你选择。本小节只是简单介绍个大概,并不提供详细操作指南。

AuToTest

AuToTest 是一个全自动测试框架,存在的主要目的就是测试 Linux 内核,当然也可以用来测试其他东西,比如测试一块新硬件是否能稳定工作。AuToTest 是开源软件,以 GPL 方式授权,运行于 server-client 架构(即 C/S 架构)。你可以通过配置 server 端来对运行了 client 端的系统执行初始化、运行与监测工作,也可以自己在目标系统上让 client 运行起来。另外你可以为这个测试框架添加测试用例,详情请参考AuToTest 白皮书

Linaro Automated Validation Architecture

LAVA 自动测试框架用于自动安装于运行测试。举个例子:你在 LAVA 里面只需运行几个命令就可以跑 LTP(LCTT:Linux Test Project,中文是 Linux 测试计划,SGI发起并由IBM负责维护,目的是为开源社区提供测试套件来验证Linux的可靠性、健壮性和稳定性)。通过 LAVA 命令可以自动为你安装 LTP 所需要的所有依赖包,下载源码、编译编码、将 LTP 安装到某个独立的地方,方便卸载 LTP 时能移除所有二进制文件。安装好 LTP 后,运行 LAVA 命令时添加 'ltp' 选项就可以运行 LTP 测试任务了,它会将测试结果以文件方式保存下来,文件名包含测试名称、时间戳。这些测试结果可以留着供以后参考。这是个发现软件退化(如果软件退化了的话)的好方法。下面列出 LAVA 配合 LTP 使用的一些命令:

显示 LAVA 支持的测试列表:

lava-test list-tests 

安装测试套件:

lava-test install ltp 

运行测试:

lava-test run ltp 

查看结果:

lava-test results show ltp-timestamp.0 

卸载测试套件:

lava-test uninstall ltp 

内核调试功能

Linux 内核本身包含很多调试功能,比如 kmemcheck 和 kmemleak。

kmemcheck

kmemcheck 是一个动态检查工具,可以检测出一些未被初始化的内存(LCTT:内核态使用这些内存可能会造成系统崩溃)并发出警告。它的功能与 Valgrind 类似,只是 Valgrind 运行在用户态,而 kmemchecke 运行在内核态。编译内核时加上 CONFIG\_KMEMCHECK 选项打开 kmemcheck 调试功能。你可以阅读 Documentation/kmemcheck.txt 来学习如何配置使用这个功能,以及如何看懂调试结果。

kmemleak

kmemleak 通过类似于垃圾收集器的功能来检测内核是否有内存泄漏问题。而 kmemleak 与垃圾收集器的不同之处在于前者不会释放孤儿目标(LCTT:不会再被使用的、应该被释放而没被释放的内存区域),而是将它们打印到 /sys/kernel/debug/kmemleak 文件中。用户态的 Valgrind 也有一个类似的功能,使用 --leak-check 选项可以检测并报错内存泄漏问题,但并不释放这个孤儿内存。编译内核时使用 CONFIG\_DEBUG\_KMEMLEAK 选项打开 kmemcleak 调试功能。阅读 Documentation/kmemleak.txt 来学习怎么使用这个工具并读懂调试结果。

内核调试接口

Linux 内核通过配置选项、调试用的 API、接口和框架来支持动态或静态的调试。我们现在就好好学习学习这些牛逼的功能,从静态编译选项开始讲。

调试配置选项:静态编译

大部分 Linux 内核以及内核模块都包含调试选项,你只要在编译内核或内核模块的时候添加这个静态调试选项,程序运行时后就会产生调试信息,并记录在 dmesg 缓存中。

调试的 API

调试 API 的一个很好的例子是 DMA-debug,用来调试驱动是否错误使用了 DMA 提供的 API。它会跟踪每个设备的映射关系,检测程序有没有试图为一些根本不存在的映射执行“取消映射”操作,检测代码建立 DMA 映射后可能产生的“映射丢失”的错误。内核配置选项 CONFIG\_HAVE\_DMA\_APT\_DEBUG 和 CONFIG\_DMA\_API\_DEBUG 可以为内核提供这个功能。其中,CONFIG\_DMA\_API\_DEBUG 选项启用后,内核调用 DMA 的 API 的同时也会调用 Debug-dma 接口。举例来说,当一个驱动调用 dma\_map\_page() 函数来映射一个 DMA 缓存时,dma\_map\_page() 会调用debug\_dma\_map\_page() 函数来跟踪这个缓存,直到驱动调用 dma\_unmap\_page() 来取消映射。详细内容请参考使用 DMA 调试 API 检测潜在的数据污染和内存泄漏问题

动态调试

动态调试功能就是你可以决定在程序运行过程中是否要 pr\_debug(), dev\_dbg(), print\_hex\_dump\_debug(), print\_hex\_dump\_bytes() 这些函数正常运行起来。什么意思?当程序运行过程中出现错误时,你可以指定程序打印有针对性的、详细的调试信息。这功能牛逼极了,我们不再需要为了添加调试代码定位一个问题,而重新编译安装内核。你可以指定 CONDIF\_DYNAMIC\_DEBUG 选项打开动态调试功能,然后通过 /sys/kernel/debug/dynamic\_debug/control 接口指定要打印哪些调试日志。下面分别列出代码级别和模块级别打印日志的操作方法:

让 kernel/power/suspend.c 源码第340行的 pr\_debug() 函数打印日志:

echo 'file suspend.c line 340 +p' > /sys/kernel/debug/dynamic_debug/control

让内核模块在加载过程中打开动态调试功能:

使用 modprobe 命令加在模块时加上 dyndbg='plmft' 选项。

让内核模块的动态调试功能在重启后依然有效:

编辑 /etc/modprobe.d/modname.conf 文件(没有这个文件就创建一个),添加 dyndbg='plmft' 选项。然而对于哪些通过 initramfs 加载的驱动来说,这个配置基本无效(LCTT:免费奉送点比较高级的知识哈。系统启动时,需要先让 initramfs 挂载一个虚拟的文件系统,然后再挂载启动盘上的真实文件系统。这个虚拟文件系统里面的文件是 initramfs 自己提供的,也就是说你在真实的文件系统下面配置了 /etc/modprobe.d/modname.conf 这个文件,initramfs 是压根不去理会的。站在内核驱动的角度看:如果内核驱动在 initramfs 过程中被加载到内核,这个驱动读取到的 /etc/modprobe.d/modname.conf 是 initramfs 提供的,而不是你编辑的那个。所以会有上述“写了配置文件后重启依然无效”的结论)。对于这种刁民,呃,刁驱动,我们需要修改 grub 配置文件,在 kernel 那一行添加 module.dyndbg='plmft' 参数,这样你的驱动就可以开机启动动态调试功能了。

想打印更详细的调试信息,可以使用 dynamic\_debug.verbose=1 选项。参考 Documentation/dynamic-debug-howto.txt 文件获取更多信息。

设置追踪点

到目前为止,我们介绍了多种动态和静态调试方法。静态调试选项和静态调试钩子函数(比如 DMA Debug API)需要的编译过程打开或关闭,导致了一个难过的事实:需要重新编译安装内核。而动态编译功能省去了“重新编译”这件麻烦事,但是也有不足的地方,就是调试代码引入了条件变量,用于判断是否打印调试信息。这种方法可以让你在程序运行时决定是否打印日志,但需要执行额外的判断过程。“追踪点”代码只会在程序运行过程中使用“追踪点”功能才会被触发。也就是说,“追踪点”代码与上述说的两种方法都不一样。当用不到它时,它不会运行(LCTT:动态调试的话,代码每次都需要查看下变量,然后判断是否需要打印日志;而“追踪点”貌似利用某种触发机制,不需要每次都去查看变量)。当你需要用到它时,程序的代码会把“追踪点”代码包含进去。它不会添加任何条件变量来增加系统的运行负担。

详细信息请参考布置追踪代码的小技巧

“追踪点”的原理

追踪点使用“跳跃标签”,这是一种使用分支跳转的编码修正(code modification)技术。

当关闭追踪点的时候,其伪代码看起来时这样的:

[ code1 ]
nop
back:
[ code2 ]
return;
tracepoint:
[ tracepoint code ]
jmp back;

当打开追踪点的时候,其伪代码看起来时这样的:(注意追踪点代码出现的位置)

[ code1 ]
jmp tracepoint
back:
[ code2 ]
return;
tracepoint:
[ tracepoint code ]
jmp back;

(LCTT:咳咳,解释解释上面两段伪代码吧,能看懂的大神请忽略这段注释。不使用追踪点时,代码运行过程是:code1->code2->return结束;使用追踪点时,代码运行过程是:code1->跳到tracepoint code执行调试代码->跳回code2->return结束。两段代码的唯一区别就是第二行,前者为 nop(不做任何操作),后者为 jmp tracepoint (跳到调试代码)。)

Linux 电源管理子系统的测试

使用静态调试、动态调试和追踪调试技术,我们来跑一下磁盘的电源管理测试。当系统被挂起时,内核会为磁盘创建一个休眠镜像,使磁盘进入休眠模式,当系统重新被唤醒时,内核又利用这个休眠镜像重新唤醒磁盘。

设置挂起设备与唤醒设备需要的时间:

echo 1 > /sys/power/pm_print_times

以 reboot 模式挂起磁盘:

echo reboot > /sys/power/disk
echo disk > /sys/power/state

以 shutdown 模式挂起磁盘 —— 与 reboot 模式一样,只是重新唤醒磁盘的话还需要电源提供。

echo shutdown > /sys/power/disk
echo disk > /sys/power/state

以 platform 模式挂起磁盘 —— 能测试更多内容,比如 BIOS 挂起和唤醒,会涉及到 ACPI 功能。我们推荐你使用这种方式,把 BIOS 也拉下水陪你玩挂起和唤醒游戏。

echo platform > /sys/power/disk
echo disk > /sys/power/state

via:http://www.linuxjournal.com/content/linux-kernel-testing-and-debugging?page=0,3

译者:bazz2 校对:校对者ID

本文由 LCTT 原创翻译,Linux中国 荣誉推出

基本测试

安装好内核后,试试能不能启动它。能启动的话,检查 dmesg 看看有没有隐藏的错误。试试下面的功能:

  • 网络(Wifi 或者网线)是否可用?
  • ssh 是否可用?
  • 使用 ssh 远程传输文件。
  • 使用 git clone 和 git pull 命令。
  • 用用网络浏览器。
  • 查看 email。
  • 使用 ftp, wget 等软件下载文件。
  • 播放音频视频文件。
  • 连上 USB 鼠标等设备。

检查内核日志

使用 dmesg 查看隐藏的问题,对于定位新代码带来的 bug 是一个好方法。一般来说,dmesg 不会输出新的 crit, alert, emerg 级别的错误信息,也不应该出现新的 err 级别的信息。你要注意的是那些 warn 级别的日志信息。请注意 warn 这个级别的信息并不是坏消息,新代码带来新的警告信息,不会给内核带去严重的影响。

  • dmesg -t -l emerg
  • dmesg -t -l crit
  • dmesg -t -l alert
  • dmesg -t -l err
  • dmesg -t -l warn
  • dmesg -t -k
  • dmesg -t

下面的脚本运行了上面的命令,并且将输出保存起来,以便与老的内核的 dmesg 输出作比较(LCTT:老内核的 dmesg 输出在本系列的第二篇文章中有介绍)。然后运行 diff 命令,查看新老内核 dmesg 日志之间的不同。这个脚本需要输入老内核版本号,如果不输入参数,它只会生成新内核的 dmesg 日志文件后直接退出,不再作比较(LCTT:话是这么说没错,但点开脚本一看,没输参数的话,这货会直接退出,连新内核的 dmesg 日志也不会保存的)。如果 dmesg 日志有新的警告信息,表示新发布的内核有漏网之“虫”,这些 bug 逃过了自测和系统测试。你要看看,那些警告信息后面有没有栈跟踪信息?也许这里有很多问题需要你进一步调查分析。

压力测试

执行压力测试的一个好办法是同时跑三四个内核编译任务。下载各种版本的内核,同时编译它们,并记录时间。比较新内核跑压力测试和老内核跑压力测试所花的时间,然后可以定位新内核的性能。如果新内核跑压力测试的时间比老内核的更长,说明新内核的部分模块性能退步了。性能问题很难调试出来。第一步是找出哪里导致的性能退步。同时跑多个内核编译任务对检测内核整体性能来说是个好方法,但是这种方法涵盖了多个内核模块,比如内存管理、文件系统、DMA、驱动等(LCTT:也就是说,这种压力测试没办法定位到是哪个模块造成了性能的下降)。

time make all

内核测试工具

我们可以在 Linux 内核本身找到多种测试方法。下面介绍一个很好用的功能测试工具集: ktest 套件

ktest 是一个自动测试套件,它可以提供编译安装启动内核一条龙测试服务,也可以跑交叉编译测试,前提是你的系统有安装交叉编译所需要的软件。ktest 依赖于 flex 和 bison。详细信息请参考放在 tools/testing/ktest 目录下的文档,你可以自学成材。另外还有一些参考资料教你怎么使用 ktest:

tools/testing/selftests 套件

我们来玩玩自测吧。内核源码的多个子系统都有自己的自测工具,到目前为止,断点、cpu热插拔、efivarfs、IPC、KCMP、内存热插拔、mqueue、网络、powerpc、ptrace、rcutorture、定时器和虚拟机子系统都有自测工具。另外,用户态内存的自测工具可以利用 testusercopy 模块来测试用户态内存到内核态的拷贝过程。下面的命令演示了如何使用这些测试工具:

编译测试:

make -C tools/testing/selftests 

测试全部:(有些测试需要 root 权限,你需要以 root 用户登入系统然后运行命令)

make -C tools/testing/selftests run_tests 

只测试单个子系统:

make -C tools/testing/selftests TARGETS=vm run_tests 

tools/testing/fault-injection 套件

在 tools/testing 目录下的另一个测试套件是 fault-injection。failcmd.sh 脚本用于检测 slab 和内存页分配器的错误。这些工具可以测试内核能否很好地从错误状态中恢复回来。这些测试需要用到 root 权限。下面简单介绍了一些当前能提供的错误检测方法。随着错误检测方法的增加,这份名单也会不断增长。最新的名单请参考 Documentation/fault-injection/fault-injection.txt 文档。

failslab (默认选项)

产生 slab 分配错误。作用于 kmalloc(), kmemcachealloc() 等函数(LCTT:产生的结果是调用这些函数就会返回失败,可以模拟程序分不到内存时是否还能稳定运行下去)。

fail\_page\_alloc

产生内存页分配的错误。作用于 allocpages(), getfree\_pages() 等函数(LCTT:同上,调用这些函数,返回错误)。

fail\_make\_request

对满足条件(可以设置 /sys/block//make-it-fail 或 /sys/block///make-it-fail 文件)的磁盘产生 IO 错误,作用于 generic\_make\_request() 函数(LCTT:所有针对这块磁盘的读或写请求都会出错)。

fail\_mmc\_request

对满足条件(可以设置 /sys/kernel/debug/mmc0/fail\_mmc\_request 这个 debugfs 属性)的磁盘产生 MMC 数据错误。

你可以自己配置 fault-injection 套件的功能。fault-inject-debugfs 内核模块在系统运行时会在 debugfs 文件系统下面提供一些属性文件。你可以指定出错的概率,指定两个错误之间的时间间隔,当然本套件还能提供更多其他功能,具体请查看 Documentation/fault-injection/fault-injection.txt。 Boot 选项可以让你的系统在 debugfs 文件系统起来之前就可以产生错误,下面列出几个 boot 选项:

  • failslab=
  • fail\_page\_alloc=
  • fail\_make\_request=
  • mmc\_core.fail\_request=[interval],[probability],[space],[times]

fault-injection 套件提供接口,以便增加新的功能。下面简单介绍下增加新功能的步骤,详细信息请参考上面提到过的文档:

使用 DECLARE\_FAULT\_INJECTION(name) 定义默认属性;

详细信息可查看 fault-inject.h 中定义的 struct fault\_attr 结构体。

配置 fault 属性,新建一个 boot 选项;

这步可以使用 setup\_fault\_attr(attr, str) 函数完成,为了能在系统启动的早期产生错误,添加一个 boot 选项这一步是必须要有的。

添加 debugfs 属性;

使用 fault\_create\_debugfs\_attr(name, parent, attr) 函数,为新功能添加新的 debugfs 属性。

为模块设置参数;

为模块添加一些参数,对于配置错误属性来说是一个好主意,特别是当新功能的应用范围受限于单个内核模块的时候(LCTT:不同内核,你的新功能可能需要不同的测试参数,通过设置参数,你的功能可以不必为了迎合不同内核而每次都重新编译一遍)。

添加一个钩子函数到错误测试的代码中。

should\_fail(attr, size) —— 当这个钩子函数返回 true 时,用户的代码就应该产生一个错误。

应用程序使用这个 fault-injection 套件可以指定某个具体的内核模块产生 slab 和内存页分配的错误,这样就可以缩小性能测试的范围。


via: http://www.linuxjournal.com/content/linux-kernel-testing-and-debugging?page=0,2

译者:bazz2 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

编译安装稳定版内核

如果你用 git 下载源码,就执行以下命令:

cd linux-stable
git checkout linux-3.x.y

如果是直接下载压缩文件,用以下命令进入源码目录:

cd linux-3.x.y

如果你想把内核安装到自己的系统上,最安全的方法是使用你安装好的发行版拥有的配置文件。你可以在 /boot 目录找到当前发行版的内核配置文件:

cp /boot/config-3.x.y-z-generic .config

运行下面的命令,可以在当前内核配置的基础上修改一些小地方,然后产生新的内核配置文件。比如说新的内核比你的 Ubuntu 发行版自带的内核多了些新功能,而你正好需要用到它们,这个时候你就要修改配置了。

make oldconfig

完成配置后,就可以编译了:

make all

完成编译后,安装这个新的内核:

sudo "make modules_install install"

上面的命令安装新内核,并把新内核作为启动项添加到 grub 文件(LCTT:就是你下次开机时会多出一个开机选项)。好了你可以重启电脑,然后选择新的内核启动系统。等等!先别冲动,在重启电脑之前,我们保存下编译内核产生的日志,用于比较和查找错误(如果有错误发生的话):

dmesg -t > dmesg_current
dmesg -t -k > dmesg_kernel
dmesg -t -l emerg > dmesg_current_emerg
dmesg -t -l alert > dmesg_current_alert
dmesg -t -l crit > dmesg_current_alert
dmesg -t -l err > dmesg_current_err
dmesg -t -l warn > dmesg_current_warn

正常的话,dmesg 不会输出 emerg, alert, crit 和 err 级别的信息。如果你不幸看到这些输出了,说明内核或者你的硬件环境有问题。

再介绍一些重启前的需要执行的操作。谁也不能保证新内核能够正常启动,所以请不要潇洒地把老内核删除,至少保留一个稳定可用的内核在系统上。修改一下 /etc/default/grub 文件:

使用 earlyprink=vga 作为内核启动选项,把系统早期启动的信息打印到显示屏上:

GRUB_CMDLINE_LINUX="earlyprink=vga" 

将 GRUB\_TIMEOUT 的值设置成10秒到15秒之间的值,保证在开机启动的时候你有足够的时间来选择启动哪个内核:

取消对 GRUB\_TIMEOUT 的注释,并把它设置为10:GRUB\_TIMEOUT=10

注释掉 GRUB\_HIDDEN\_TIMEOUT 和 GRUB\_HIDDEN\_TIMEOUT\_QUIET

运行 update-grub 命令,更新 /boot 目录下的 grub 配置文件:

sudo update-grub 

现在可以重启系统了。新内核起来后,比较新老内核的 dmesg 信息,看看新的内核有没有编译错误。如果新内核启动失败,你需要通过老内核启动系统,然后分析下为什么失败。

跟上节奏,永不落后(编译最新版内核)

如果你想开上内核快车道,追求与时俱进,那就去下载 mainline 状态的内核或 linux-next 状态的内核(LCTT:读者可进入 kernel.org 获取代码,linux 代码被分为4种状态:mainline, stable, longterm, linux-next)。安装测试 mainline 状态或 linux-next 状态的内核,你就可以在正式发布之前帮助内核找到并修复里面的 bug。

mainline 状态的内核源码:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

linux-next 状态的内核源码:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git

编译安装这两种内核的步骤与编译安装稳定版内核一样。按之前讲过的步骤来就行了。

打补丁

Linux 内核的补丁是一个文本文件,包含新源码与老源码之间的差异。每个补丁只包含自己所依赖的源码的改动,除非它被特意包含进一系列补丁之中。打补丁方法如下:

patch -p1 < file.patch
git apply --index file.patch 

两种方法都可以打补丁。但是,如果你要打的补丁包含一个新文件,git 命令不能识别这个新增的文件,也就是说这个新文件在 git 里面属于 untracked 文件(LCTT:玩 git 的人对这个会比较熟悉,就是文件处于未被跟踪的状态,你需要使用 git add 命令将文件放入暂存区)。git diff 命令不会将这个文件的增量显示出来,并且 git status 命令会显示这个文件处于 untracked 状态。

大多数情况下,有个没被跟踪的文件,对于编译安装内核来说没什么问题,但是 git 操作就会出现一些问题了: git reset --hard 命令不会删除这个新加的文件,并且接下来的 git pull 操作也会失败。你有多种选择来避免上面所说的状况:

选项1,不跟踪这个新文件:

如果打补丁后新添加了文件,在 git reset --hard 前使用 git clean 命令来删除没有被跟踪的文件。举个例子,git clean -dfx 命令会强制删除未被跟踪的目录和文件,忽略在 .gitigniore 文件内规定的文件。如果你不在乎哪些文件会被删除,你可以使用 -q 选项让 git clean 命令进入安静模式,不输出任何处理过程。

选项2,跟踪新文件:

你可以在使用 git apply --index file.patch 命令后让 git 跟踪打完补丁后新产生的文件(LCTT:使用 git add 命令),就是让 git 把文件放入 index 区域。做完这个后,git diff 命令会将新文件的增量打印出来,git status 也会显示者这是一个正常的新增文件。

via: http://www.linuxjournal.com/content/linux-kernel-testing-and-debugging?page=0,1

译者:bazz2 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

就在我们在梦乡中沉醉的的时间里,莱纳斯·托沃兹却一直处在忙碌之中。

是的,大家应该已经知道了,不久之前,Linux 3.16已经释出了稳定版本。

在他购买的一张跑步机办公桌上(或许不是,但是他的性格中的幽默实在是难以让人招架)Linux的创始人终于公布了最新的稳定版本:

“虽然3.16有一阵看起来有点玄乎,但是后来一切进展顺利,没有理由去做一些额外的候选发布版,就像几个星期前我担心的那样。”

Linux 3.16有什么新特性?

代号为“Shuffling Zombie Juror”的Linux 3.16 的发布伴随着一系列的关键性改进。它们包括了复杂的和完整的 - 例如,“unified control group hierarchy(注:统一控制组层次结构)” , 给更多的用户访问权限,如新的和改进的驱动程序。

多亏了Linux Weekly NewsPhoronix 的辛勤工作(还有google在linux内核邮件列表上的出色贡献),我们整理了一些在这个版本中出现的的显着的变化和特性。

  • 在多个ARM SoC的多平台的ARM内核映像(包括Exynos)
  • 对Nvidia的Tegra K1和开普勒GPU的各种支持
  • 诺基亚N900的调制解调器驱动程序包含在主线
  • 加入对英特尔Cherryview支持
  • 改善对SIXAXIS和DUALSHOCK 4控制器的支持
  • Sony-HID驱动程序的改进
  • Synaptics触摸板的RMI驱动程序
  • Saitek RAT7游戏鼠标的修复
  • 戴尔 FreeFall driver
  • Btrfs 文件系统的80的改变和修正,
  • 新的音频驱动程序杂项。Cirrus,瑞昱 和 Analog 设备。
  • Tegra的高清音频HDMI 支持

安装Linux 3.16

新的内核发布了,你想要吗?好吧,先别急。 Linux的3.16很有可能在Ubuntu Linux14.10将作为默认内核而在今年晚些时候发布。而14.10版的内核也将不久后通过小版本更新提供给LTS的用户们。

如果你是一个急性子,最重要的是具备足够娴熟的技能,你可以使用在Canonical维护的主线内核档案中列出的相应的安装器 , 在为你的Ubuntu 14.04 LTS上安装Linux 3.16内核。


via: http://www.omgubuntu.co.uk/2014/08/linux-kernel-3-16-changes-drivers

作者:Joey-Elijah Sneddon 译者:owen-carter 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

Linux 内核测试哲学

不管是开源还是闭源,所有软件的开发流程中,测试是一个重要的、不可或缺的环节,Linux 内核也不例外。开发人员自测、系统测试、回归测试、压力测试,都有各自不同的目的,但是从更高一个层次上看,这些测试的最终目的又是一样的:保证软件能一直运行下去,当有新功能加进去时,要保证新功能可以正常工作。

在软件释出 release 版之前,不用回归测试就能保证稳定性,并且尽量避免在软件发布后被用户发现 bug。调试被用户发现的 bug 是一项非常浪费时间和精力的工作。因此测试是一项非常重要的工作。不像闭源和专有的操作系统,Linux 内核的开发过程是完全开放的。这种处理方式即是它的优点,也是它的缺点。多个开发者持续增加新功能、修 bug、不断集成与测试 —— 当环境有新的硬件或功能时,这种开发方式能够保证内核能持续工作。在开源项目中,开发者与用户共享测试的结果,这也是开源项目与闭源项目之间的一个很重要的差别。

几乎所有 Linux 内核开发者都是活跃的 Linux 用户。内核测试人员不一定非得是内核开发者,相反,用户和开发者如果对新增的代码不是很熟悉,他们的测试效果会比代码开发人员自己测试的效果要好很多。也就是说,开发者的单元自测能验证软件的功能,但并不能保证在其他代码、其他功能、其他软件、硬件环境下面运行时会出现什么问题。开发者无法预料、也没有机会和资源来测试所有环境。因此,用户在 Linux 内核开发过程中起到非常重要的角色。

现在我们已经了解了持续集成测试的重要性,接下来我们会详细介绍测试的知识。但在此之前,我还是向你介绍一下开发的过程,以便让大家了解它是怎么工作的,以及如何把补丁打进内核主线。

全世界共有3000多个内核开发者为 Linux 内核贡献代码,每天都有新代码添加到内核,结果是大概2个月就能产生一个release ,包括几个稳定版和扩展稳定版。新功能的开发与已发布的稳定版集成测试流程在同时进行。

关于开发流程的详细描述,请参考Greg Kroah-Hartman 的 Linux 内核开发的介绍

这份教程适合与初学者以及有经验的内核开发者,如果你想加入到内核开发者行列,那么它也适合你。有经验的开发人员可以跳过那些介绍基础测试和调试的章节。

这份教程介绍如何测试和调试 Linux 内核、工具、脚本以及在回归测试和集成测试中使用的调试机制。另外,本文还会介绍如何使用 git 把针对一个 bug 的补丁分离出来,再介绍把你的补丁提交到内核的邮件列表之前需要做些什么。我将会使用 Linux PM 作为测试它调试的对象。尽管本文讨论的是 Linux 内核,但是介绍的方法也适用于任何其他软件开发项目。

配置开发与测试的系统

第一步,找一个满足你需求的开发环境,x86-64 是一个比较理想的选择,除非你必须用特别的架构。

第二步,安装 Linux 发行版,我推荐 Ubuntu,所以本教程会介绍基于 Ubuntu 的配置过程。你可以参考如何使用 Ubuntu 来安装一个 Ubuntu 系统。

在开发和测试环境,最好要保证你的 boot 分区有足够的空间来存放内核文件。你可以为 boot 分区留下 3GB 空间,或把 boot 分区直接放到根目录下,这样 boot 分区可以使用整个磁盘的空间。

安装好操作系统后,确保 root 用户可用,确保你的用户身份可以使用 sudo 命令。你的系统也许已经安装了 build-essential,它是编译内核必备的软件包,如果没安装,运行下面的命令:

sudo apt-get install build-essential

然后运行下面的命令,保证你的系统能够交叉编译内核。下面的 ncurses-dev 安装包是运行 make menuconfig 命令必须用到的。

sudo apt-get install binutils-multiarch
sudo apt-get install ncurses-dev
sudo apt-get install alien

然后安装一些每个内核开发者都会用到的工具包:

sudo apt-get install git
sudo apt-get install cscope
sudo apt-get install meld
sudo apt-get install gitk

如果你喜欢把内核通过交叉编译以支持非 x86\_64 架构的环境,请参考在 x86\_64 上交叉编译 Linux 内核

稳定的内核

使用 git 克隆一个稳定的内核,然后编译安装。你可以参考Linux 内核结构来找到最新的稳定版和开发主线。

git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

上面的步骤将会创建一个新的目录,名为 linux-stable,并把源码下载到里面。

你也可以直接下载压缩包并解压出源码,无需使用 git:

tar xvf linux-3.x.y.tar.xz

via: http://www.linuxjournal.com/content/linux-kernel-testing-and-debugging?page=0,0

译者:bazz2 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出

你好!在花费了大量的时间在配置你需要的内核后,你现在可以编译它了。源代码是纯文本形式的C代码。这对人来可读但是对机器可不是这样。编译会将代码转换成计算机可理解的一种称之为二进制码的形式(1是 [开],0 是 [关])。编译同样会将所有内核代码文件变成一个内核的文件。

为了编译内核,在内核源代码相同目录下,在终端内输入"make"。这会花费一些时间。完成之后,必须通过"make modules"来编译模块。为了从一开始就简化编译过程,输入"make; make modules"。这会先编译接着是模块,而不用用户再回来输入"make modules"。

警告:在你安装一个内核时,备份所有的重要数据,确保有一份/boot目录备份在FAT32的存储卡上。这可以在如果安装失败后帮助修复系统。FAT32不会存储权限,因此它更容易被用作live盘来还原数据。记住设置原始文件权限和可执行位。

一旦编译已经成功完成,我们可以安装内核到本地系统中(我会马上解释如何在其他系统上安装内核[交叉编译])。在相同的终端下,在编译完成后,输入"make install"。这会在/boot目录下存放一些文件。"vmlinuz"(或者其他相似的名字)是内核自身。"initrd"是基于内存的文件系统,它被置于内存中且在启动中使用。"System-map"包含了一张内核符号列表。这些全局变量和函数用于内核代码。"config" 是内核的配置文件。grub.cfg会自动更新。然而,有些bootloder需要手动配置。内核安装器会自动配置Grub,LILO和SysLinux bootloder。像BURG这类bootloder需要手动配置。模块的安装同样需要输入"make modules install"。

注:内核和模块的安装可以写在一行-“make install && make modules\_install”。

一旦上面的过程完成了,用户可以通过重启系统并在开机后在终端内输入"uname -r"来确保内核已经安装。如果系统无法启动或者uname报告你预期外的版本号,这个问题可能众多问题之一引起。或者是bootloader没有正确设置,特性/配置冲突,编译失败,不正确的安装,或者其他原因。找出问题源头最好的方法是查看系统日志(如果系统已经启动到足以产生日志)。"dmsg"是一个在屏幕上打印内核日志的命令。查看错误、警告或者未预料的结果。如果系统没有启动或者没有足够启动完全来生成日志,使用live linux盘来执行诊断和修复。如果所有的都失败了,再次编译内核并确保你已经用root或者"sudo"安装了内核。

注:最好的修复系统的方式是使用live Linux发行版来移除新的/损坏的内核,接着手动修复Grub文件(或者复制一个备份)。

一些Linux用户也喜欢安装内核文档,但这并不是必要。对于那些想要安装文档的用户,输入这行,这里的version是你的内核版本号 "install -d /usr/share/doc/linux-VERSION && cp -r Documentation/* /usr/share/doc/linux-VERSION"(VERSION 是内核版本号)。很明显,这需要root特权。

要是想编译一个如你目前内核一样特性的内核,输入这条命令"zcat /proc/config.gz > .config"。这个文件可能不存在,如果是这样,你可能需要询问你发行版/内核的开发者这个文件。"zcat"命令解压并写入数据到一个".config"文件中。记住把".config"放到合适的位置。这个文件应该放置在Linux内核目录下,并允许它替换当前的文件。接着,像往常一样编译安装你的内核即可。

交叉编译稍微有点不同。为目标系统配置内核。确保内核配置完后,它是以交叉编译配置的。当交叉编译时,需要熟悉两条术语。"Host"是执行编译的系统,"Target"是接收新内核的系统。确保Host主机系统有合适的编译器。比如,对于ARM系统的交叉编译,用户需要在主机系统上有gcc-arm-linux-gnueabi。通常来说,开发者可以在他们的包管理器上搜寻或者Google到合适/最好的适合他们需要的交叉编译器。比如用于ARM系统交叉编译的命令是"make ARCH=arm CROSS\_COMPILE=arm-linux-gnueabi-"。"ARCH=arm"指的是目标处理器的类型,"CROSS\_COMPILE"指明了交叉编译器。注意交叉编译器前面缺少了"gcc-"并以连字符结束。这是用户在使用交叉编译器作为参数使用时必须使用的格式。模块可以通过输入"make ARCH=arm CROSS\_COMPILE=arm-linux-gnueabi- modules"来交叉编译。为了在目标系统上安装内核,将内核文件夹复制到目标系统上。一旦文件已在目标系统上并在该目录下打开了终端,输入"make install && make modules\_install"。当然你必须是root或者使用"sudo"。

信息:Kernel.org放了一个支持的交叉编译器列表(https://www.kernel.org/pub/tools/crosstool/)。

安装编译总结:

标准:

make && make modules && make install && make modules_install

做一个更新的版本或者重整你的内核:

zcat /proc/config.gz > .config &&  make && make modules && make install && make modules_install

交叉编译:

make ARCH={TARGET-ARCHITERCTURE} CROSS_COMPILE={COMPILER}; make ARCH={TARGET-ARCHITERCTURE} CROSS_COMPILE={COMPILER} modules && make install && make modules_install

下篇文章中,我们会讨论加入和激活模块。谢谢!


via: http://www.linux.org/threads/the-linux-kernel-compiling-and-installing.5208/

译者:geekpi 校对:wxy

本文由 LCTT 原创翻译,Linux中国 荣誉推出