分类 软件开发 下的文章

构造器是编程的强大组件。使用它们来释放 Java 的全部潜力。

在开源、跨平台编程领域,Java 无疑(?)是无可争议的重量级语言。尽管有许多伟大的跨平台框架,但很少有像 Java 那样统一和直接的。

当然,Java 也是一种非常复杂的语言,具有自己的微妙之处和惯例。Java 中与 构造器 constructor 有关的最常见问题之一是:它们是什么,它们的作用是什么?

简而言之:构造器是在 Java 中创建新 对象 object 时执行的操作。当 Java 应用程序创建一个你编写的类的实例时,它将检查构造器。如果(该类)存在构造器,则 Java 在创建实例时将运行构造器中的代码。这几句话中包含了大量的技术术语,但是当你看到它的实际应用时就会更加清楚,所以请确保你已经安装了 Java 并准备好进行演示。

没有使用构造器的开发日常

如果你正在编写 Java 代码,那么你已经在使用构造器了,即使你可能不知道它。Java 中的所有类都有一个构造器,因为即使你没有创建构造器,Java 也会在编译代码时为你生成一个。但是,为了进行演示,请忽略 Java 提供的隐藏构造器(因为默认构造器不添加任何额外的功能),并观察没有显式构造器的情况。

假设你正在编写一个简单的 Java 掷骰子应用程序,因为你想为游戏生成一个伪随机数。

首先,你可以创建骰子类来表示一个骰子。你玩了很久《龙与地下城》,所以你决定创建一个 20 面的骰子。在这个示例代码中,变量 dice 是整数 20,表示可能的最大掷骰数(一个 20 边骰子的掷骰数不能超过 20)。变量 roll 是最终的随机数的占位符,rand 用作随机数种子。

import java.util.Random;

public class DiceRoller {
  private int dice = 20;
  private int roll;
  private Random rand = new Random();

接下来,在 DiceRoller 类中创建一个函数,以执行计算机模拟模子滚动所必须采取的步骤:从 rand 中获取一个整数并将其分配给 roll变量,考虑到 Java 从 0 开始计数但 20 面的骰子没有 0 值的情况,roll 再加 1 ,然后打印结果。

import java.util.Random;

public class DiceRoller {
  private int dice = 20;
  private int roll;
  private Random rand = new Random();

最后,产生 DiceRoller 类的实例并调用其关键函数 Roller

// main loop
public static void main (String[] args) {
  System.out.printf("You rolled a ");

  DiceRoller App = new DiceRoller();
  App.Roller();
  }
}

只要你安装了 Java 开发环境(如 OpenJDK),你就可以在终端上运行你的应用程序:

$ java dice.java
You rolled a 12

在本例中,没有显式构造器。这是一个非常有效和合法的 Java 应用程序,但是它有一点局限性。例如,如果你把游戏《龙与地下城》放在一边,晚上去玩一些《快艇骰子》,你将需要六面骰子。在这个简单的例子中,更改代码不会有太多的麻烦,但是在复杂的代码中这不是一个现实的选择。解决这个问题的一种方法是使用构造器。

构造函数的作用

这个示例项目中的 DiceRoller 类表示一个虚拟骰子工厂:当它被调用时,它创建一个虚拟骰子,然后进行“滚动”。然而,通过编写一个自定义构造器,你可以让掷骰子的应用程序询问你希望模拟哪种类型的骰子。

大部分代码都是一样的,除了构造器接受一个表示面数的数字参数。这个数字还不存在,但稍后将创建它。

import java.util.Random;

public class DiceRoller {
  private int dice;  
  private int roll;
  private Random rand = new Random();

  // constructor
  public DiceRoller(int sides) {
    dice = sides;
  }

模拟滚动的函数保持不变:

public void Roller() {
  roll = rand.nextInt(dice);
  roll += 1;
  System.out.println (roll);
}

代码的主要部分提供运行应用程序时提供的任何参数。这的确会是一个复杂的应用程序,你需要仔细解析参数并检查意外结果,但对于这个例子,唯一的预防措施是将参数字符串转换成整数类型。

public static void main (String[] args) {
  System.out.printf("You rolled a ");
  DiceRoller App = new DiceRoller( Integer.parseInt(args[0]) );
  App.Roller();
}

启动这个应用程序,并提供你希望骰子具有的面数:

$ java dice.java 20
You rolled a 10
$ java dice.java 6
You rolled a 2
$ java dice.java 100
You rolled a 44

构造器已接受你的输入,因此在创建类实例时,会将 sides 变量设置为用户指定的任何数字。

构造器是编程的功能强大的组件。练习用它们来解开了 Java 的全部潜力。


via: https://opensource.com/article/19/6/what-java-constructor

作者:Seth Kenlon 选题:lujun9972 译者:laingke 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

内核持续集成(CKI)项目旨在防止错误进入 Linux 内核。

Linux 内核的持续集成测试 一文中,我介绍了 内核持续集成 Continuous Kernel Integration (CKI)项目及其使命:改变内核开发人员和维护人员的工作方式。本文深入探讨了该项目的某些技术方面,以及这所有的部分是如何组合在一起的。

从一次更改开始

内核中每一项令人兴奋的功能、改进和错误都始于开发人员提出的更改。这些更改出现在各个内核存储库的大量邮件列表中。一些存储库关注内核中的某些子系统,例如存储或网络,而其它存储库关注内核的更多方面。 当开发人员向内核提出更改或补丁集时,或者维护者在存储库本身中进行更改时,CKI 项目就会付诸行动。

CKI 项目维护的触发器用于监视这些补丁集并采取措施。诸如 Patchwork 之类的软件项目通过将多个补丁贡献整合为单个补丁系列,使此过程变得更加容易。补丁系列作为一个整体历经 CKI 系统,并可以针对该系列发布单个报告。

其他触发器可以监视存储库中的更改。当内核维护人员合并补丁集、还原补丁或创建新标签时,就会触发。测试这些关键的更改可确保开发人员始终具有坚实的基线,可以用作编写新补丁的基础。

所有这些更改都会进入 GitLab CI 管道,并历经多个阶段和多个系统。

准备构建

首先要准备好要编译的源代码。这需要克隆存储库、打上开发人员建议的补丁集,并生成内核配置文件。这些配置文件具有成千上万个用于打开或关闭功能的选项,并且配置文件在不同的系统体系结构之间差异非常大。 例如,一个相当标准的 x86\_64 系统在其配置文件中可能有很多可用选项,但是 s390x 系统(IBM zSeries 大型机)的选项可能要少得多。在该大型机上,某些选项可能有意义,但在消费类笔记本电脑上没有任何作用。

内核进一步转换为源代码工件。该工件包含整个存储库(已打上补丁)以及编译所需的所有内核配置文件。 上游内核会打包成压缩包,而 Red Hat 的内核会生成下一步所用的源代码 RPM 包。

成堆的编译

编译内核会将源代码转换为计算机可以启动和使用的代码。配置文件描述了要构建的内容,内核中的脚本描述了如何构建它,系统上的工具(例如 GCC 和 glibc)完成构建。此过程需要一段时间才能完成,但是 CKI 项目需要针对四种体系结构快速完成:aarch64(64 位 ARM)、ppc64le(POWER)、s390x(IBM zSeries)和 x86\_64。重要的是,我们必须快速编译内核,以便使工作任务不会积压,而开发人员可以及时收到反馈。

添加更多的 CPU 可以大大提高速度,但是每个系统都有其局限性。CKI 项目在 OpenShift 的部署环境中的容器内编译内核;尽管 OpenShift 可以实现高伸缩性,但在部署环境中的可用 CPU 仍然是数量有限的。CKI 团队分配了 20 个虚拟 CPU 来编译每个内核。涉及到四个体系结构,这就涨到了 80 个 CPU!

另一个速度的提高来自 ccache 工具。内核开发进展迅速,但是即使在多个发布版本之间,内核的大部分仍保持不变。ccache 工具进行编译期间会在磁盘上缓存已构建的对象(整个内核的一小部分)。稍后再进行另一个内核编译时,ccache 会查找以前看到的内核的未更改部分。ccache 会从磁盘中提取缓存的对象并重新使用它。这样可以加快编译速度并降低总体 CPU 使用率。现在,耗时 20 分钟编译的内核在不到几分钟的时间内就完成了。

测试时间

内核进入最后一步:在真实硬件上进行测试。每个内核都使用 Beaker 在其原生体系结构上启动,并且开始无数次的测试以发现问题。一些测试会寻找简单的问题,例如容器问题或启动时的错误消息。其他测试则深入到各种内核子系统中,以查找系统调用、内存分配和线程中的回归问题。

大型测试框架,例如 Linux Test Project(LTP),包含了大量测试,这些测试在内核中寻找麻烦的回归问题。其中一些回归问题可能会回滚关键的安全修复程序,并且进行测试以确保这些改进仍保留在内核中。

测试完成后,关键的一步仍然是:报告。内核开发人员和维护人员需要一份简明的报告,准确地告诉他们哪些有效、哪些无效以及如何获取更多信息。每个 CKI 报告都包含所用源代码、编译参数和测试输出的详细信息。该信息可帮助开发人员知道从哪里开始寻找解决问题的方法。此外,它还可以帮助维护人员在漏洞进入内核存储库之前知道何时需要保留补丁集以进行其他查看。

总结

CKI 项目团队通过向内核开发人员和维护人员提供及时、自动的反馈,努力防止错误进入 Linux 内核。这项工作通过发现导致内核错误、安全性问题和性能问题等易于找到的问题,使他们的工作更加轻松。


via: https://opensource.com/article/19/8/linux-kernel-testing

作者:Major Hayden 选题:lujun9972 译者:wxy 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

 title=

Google Analytics (GA)这个最流行的用户活动追踪工具我们或多或少都听说过甚至使用过,但它的用途并不仅仅限于对页面访问的追踪。作为一个既实用又流行的工具,它已经受到了广泛的欢迎,因此我们将要在下文中介绍如何在各种 Angular 和 React 单页应用中使用 Google Analytics。

这篇文章源自这样一个问题:如何对单页应用中的页面访问进行跟踪?

通常来说,有很多的方法可以解决这个问题,在这里我们只讨论其中的一种方法。下面我会使用 Angular 来写出对应的实现,如果你使用的是 React,相关的用法和概念也不会有太大的差别。接下来就开始吧。

准备好应用程序

首先需要有一个 追踪 ID tracking ID 。在开始编写业务代码之前,要先准备好一个追踪 ID,通过这个唯一的标识,Google Analytics 才能识别出某个点击或者某个页面访问是来自于哪一个应用。

按照以下的步骤:

  1. 访问 https://analytics.google.com
  2. 提交指定信息以完成注册,并确保可用于 Web 应用,因为我们要开发的正是一个 Web 应用;
  3. 同意相关的条款,生成一个追踪 ID;
  4. 保存好追踪 ID。

追踪 ID 拿到了,就可以开始编写业务代码了。

添加 analytics.js 脚本

Google 已经帮我们做好了接入之前需要做的所有事情,接下来就是我们的工作了。不过我们要做的也很简单,只需要把下面这段脚本添加到应用的 index.html 里,就可以了:

<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
</script>

现在我们来看一下 Google Analytics 是如何在应用程序中初始化的。

创建追踪器

首先创建一个应用程序的追踪器。在 app.component.ts 中执行以下两个步骤:

  1. 声明一个名为 ga,类型为 any 的全局变量(在 Typescript 中需要制定变量类型);
  2. 将下面一行代码加入到 ngInInit() 中。
ga('create', <你的追踪 ID>, 'auto');

这样就已经成功地在应用程序中初始化了一个 Google Analytics 的追踪器了。由于追踪器的初始化是在 OnInit() 函数中执行的,因此每当应用程序启动,追踪器就会启动。

在单页应用中记录页面访问情况

我们需要实现的是记录 访问路由 route-visits

如何记录用户在一个应用中不同部分的访问,这是一个难点。从功能上来看,单页应用中的路由对应了传统多页面应用中各个页面之间的跳转,因此我们需要记录访问路由。要做到这一点尽管不算简单,但仍然是可以实现的。在 app.component.tsngOnInit() 函数中添加以下的代码片段:

import { Router, NavigationEnd } from '@angular/router';
...
constructor(public router: Router) {}
...
this.router.events.subscribe(
    event => {
        if (event instanceof NavigationEnd) {
            ga('set', 'page', event.urlAfterRedirects);
            ga('send', { hitType: 'pageview', hitCallback: () => { this.pageViewSent = true; }});
        }
    } 
);

神奇的是,只需要这么几行代码,就实现了 Angular 应用中记录页面访问情况的功能。

这段代码实际上做了以下几件事情:

  1. 从 Angular Router 中导入了 RouterNavigationEnd
  2. 通过构造函数中将 Router 添加到组件中;
  3. 然后订阅 router 事件,也就是由 Angular Router 发出的所有事件;
  4. 只要产生了一个 NavigationEnd 事件实例,就将路由和目标作为一个页面访问进行记录。

这样,只要使用到了页面路由,就会向 Google Analytics 发送一条页面访问记录,在 Google Analytics 的在线控制台中可以看到这些记录。

类似地,我们可以用相同的方式来记录除了页面访问之外的活动,例如某个界面的查看次数或者时长等等。只要像上面的代码那样使用 hitCallBack() 就可以在有需要收集的数据的时候让应用程序作出反应,这里我们做的事情仅仅是把一个变量的值设为 true,但实际上 hitCallBack() 中可以执行任何代码。

追踪用户交互活动

除了页面访问记录之外,Google Analytics 还经常被用于追踪用户的交互活动,例如某个按钮的点击情况。“提交按钮被用户点击了多少次?”,“产品手册会被经常查阅吗?”这些都是 Web 应用程序的产品评审会议上的常见问题。这一节我们将会介绍如何实现这些数据的统计。

按钮点击

设想这样一种场景,需要统计到应用程序中某个按钮或链接被点击的次数,这是一个和注册之类的关键动作关系最密切的数据指标。下面我们来举一个例子:

假设应用程序中有一个“感兴趣”按钮,用于显示即将推出的活动,你希望通过统计这个按钮被点击的次数来推测有多少用户对此感兴趣。那么我们可以使用以下的代码来实现这个功能:

...
params = {
    eventCategory:
    'Button'
    ,
    eventAction:
    'Click'
    ,
    eventLabel:
    'Show interest'
    ,
    eventValue:
    1
};

showInterest() {
    ga('send', 'event', this.params);
}
...

现在看下这段代码实际上做了什么。正如前面说到,当我们向 Google Analytics 发送数据的时候,Google Analytics 就会记录下来。因此我们可以向 send() 方法传递不同的参数,以区分不同的事件,例如两个不同按钮的点击记录。

1、首先我们定义了一个 params 对象,这个对象包含了以下几个字段:

  1. eventCategory – 交互发生的对象,这里对应的是按钮(button)
  2. eventAction – 发生的交互的类型,这里对应的是点击(click)
  3. eventLabel – 交互动作的标识,这里对应的是这个按钮的内容,也就是“感兴趣”
  4. eventValue – 与每个发生的事件实例相关联的值

由于这个例子中是要统计点击了“感兴趣”按钮的用户数,因此我们把 eventValue 的值定为 1。

2、对象构造完成之后,下一步就是将 params 对象作为请求负载发送到 Google Analytics,而这一步是通过事件绑定将 showInterest() 绑定在按钮上实现的。这也是使用 Google Analytics 追踪中最常用的发送事件方法。

至此,Google Analytics 就可以通过记录按钮的点击次数来统计感兴趣的用户数了。

追踪社交活动

Google Analytics 还可以通过应用程序追踪用户在社交媒体上的互动。其中一种场景就是在应用中放置类似 Facebook 的点赞按钮,下面我们来看看如何使用 Google Analytics 来追踪这一行为。

...
fbLikeParams = {
    socialNetwork:
        'Facebook',
    socialAction:
        'Like',
    socialTarget:
        'https://facebook.com/mypage'
};
...
fbLike() {
    ga('send', 'social', this.fbLikeParams);
}

如果你觉得这段代码似曾相识,那是因为它确实跟上面统计“感兴趣”按钮点击次数的代码非常相似。下面我们继续看其中每一步的内容:

1、构造发送的数据负载,其中包括以下字段:

  1. socialNetwork – 交互发生的社交媒体,例如 Facebook、Twitter 等等
  2. socialAction – 发生的交互类型,例如点赞、发表推文、分享等等
  3. socialTarget – 交互的目标 URL,一般是社交媒体账号的主页

2、下一步是增加一个函数来发送整个交互记录。和统计按钮点击数量时相比,这里使用 send() 的方式有所不同。另外,我们还需要把这个函数绑定到已有的点赞按钮上。

在追踪用户交互方面,Google Analytics 还可以做更多的事情,其中最重要的一种是针对异常的追踪,这让我们可以通过 Google Analytics 来追踪应用程序中出现的错误和异常。在本文中我们就不赘述这一点了,但我们鼓励读者自行探索。

用户识别

隐私是一项权利,而不是奢侈品

Google Analytics 除了可以记录很多用户的操作和交互活动之外,这一节还将介绍一个不太常见的功能,就是可以控制是否对用户的身份进行追踪。

Cookies

Google Analytics 追踪用户活动的方式是基于 Cookies 的,因此我们可以自定义 Cookies 的名称以及一些其它的内容,请看下面这段代码:

trackingID =
    'UA-139883813-1'
;
cookieParams = {
    cookieName: 'myGACookie',
    cookieDomain: window.location.hostname,
    cookieExpires: 604800
};
...
ngOnInit() {
    ga('create', this.trackingID, this.cookieParams);
...
}

在上面这段代码中,我们设置了 Google Analytics Cookies 的名称、域以及过期时间,这就让我们能够将不同网站或 Web 应用的 Cookies 区分开来。因此我们需要为我们自己的应用程序的 Google Analytics 追踪器的 Cookies 设置一个自定义的标识1,而不是一个自动生成的随机标识。

IP 匿名

在某些场景下,我们可能不需要知道应用程序的流量来自哪里。例如对于一个按钮点击的追踪器,我们只需要关心按钮的点击量,而不需要关心点击者的地理位置。在这种场景下,Google Analytics 允许我们只追踪用户的操作行为,而不获取到用户的 IP 地址。

ipParams = {
    anonymizeIp: true
};
...
ngOnInit() {
    ...
    ga('set', this.ipParams);
    ...
}

在上面这段代码中,我们将 Google Analytics 追踪器的 abibymizeIp 参数设置为 true。这样用户的 IP 地址就不会被 Google Analytics 所追踪,这可以让用户知道自己的隐私正在被保护。

不被跟踪

还有些时候用户可能不希望自己的行为受到追踪,而 Google Analytics 也允许这样的需求。因此也存在让用户不被追踪的选项。

...
optOut() {
    window['ga-disable-UA-139883813-1'] = true;
}
...

optOut() 是一个自定义函数,它可以禁用页面中的 Google Analytics 追踪,我们可以使用按钮或复选框上得事件绑定来使用这一个功能,这样用户就可以选择是否会被 Google Analytics 追踪。

在本文中,我们讨论了 Google Analytics 集成到单页应用时的难点,并探索出了一种相关的解决方法。我们还了解到了如何在单页应用中追踪页面访问和用户交互,例如按钮点击、社交媒体活动等。

最后,我们还了解到 Google Analytics 为用户提供了保护隐私的功能,尤其是用户的一些隐私数据并不需要参与到统计当中的时候。而用户也可以选择完全不受到 Google Analytics 的追踪。除此以外,Google Analytics 还可以做到很多其它的事情,这就需要我们继续不断探索了。


via: https://opensourceforu.com/2019/10/all-that-you-can-do-with-google-analytics-and-more/

作者:Ashwin Sathian 选题:lujun9972 译者:HankChow 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

使用 Go 版本管理器管理多个版本的 Go 语言环境及其模块。

Go 语言版本管理器(GVM)是管理 Go 语言环境的开源工具。GVM “pkgsets” 支持安装多个版本的 Go 并管理每个项目的模块。它最初由 Josh Bussdieker 开发,GVM(像它的对手 Ruby RVM 一样)允许你为每个项目或一组项目创建一个开发环境,分离不同的 Go 版本和包依赖关系,以提供更大的灵活性,防止不同版本造成的问题。

有几种管理 Go 包的方式,包括内置于 Go 中的 Go 1.11 的 Modules。我发现 GVM 简单直观,即使我不用它来管理包,我还是会用它来管理 Go 不同的版本的。

安装 GVM

安装 GVM 很简单。GVM 存储库安装文档指示你下载安装程序脚本并将其传送到 Bash 来安装:

bash < <(curl -s -S -L https://raw.githubusercontent.com/moovweb/gvm/master/binscripts/gvm-installer)

尽管越来越多的人采用这种安装方法,但是在安装之前先看看安装程序在做什么仍然是一个很好的想法。以 GVM 为例,该安装程序脚本:

  1. 检查一些相关依赖性
  2. 克隆 GVM 存储库
  3. 使用 shell 脚本:

    • 安装 Go 语言
    • 管理 GOPATH 环境变量
    • bashrczshrc 或配置文件中添加一行内容

如果你想确认它在做什么,你可以克隆该存储库并查看 shell 脚本,然后运行 ./binscripts/gvm-installer 这个本地脚本进行设置。

注意: 因为 GVM 可以用来下载和编译新的 Go 版本,所以有一些预期的依赖关系,如 Make、Git 和 Curl。你可以在 GVM 的自述文件中找到完整的发行版列表。

使用 GVM 安装和管理 GO 版本

一旦安装了 GVM,你就可以使用它来安装和管理不同版本的 Go。gvm listall 命令显示可下载和编译的可用版本的 Go:

[chris@marvin ]$ gvm listall

gvm gos (available)

   go1
   go1.0.1
   go1.0.2
   go1.0.3

<输出截断>

安装特定的 Go 版本就像 gvm install <版本> 一样简单,其中 <版本>gvm listall 命令返回的版本之一。

假设你正在进行一个使用 Go1.12.8 版本的项目。你可以使用 gvm install go1.12.8 安装这个版本:

[chris@marvin]$ gvm install go1.12.8
Installing go1.12.8...
 * Compiling...
go1.12.8 successfully installed!

输入 gvm list,你会看到 Go 版本 1.12.8 与系统 Go 版本(使用操作系统的软件包管理器打包的版本)一起并存:

[chris@marvin]$ gvm list

gvm gos (installed)

   go1.12.8
=> system

GVM 仍在使用系统版本的 Go ,由 => 符号表示。你可以使用 gvm use 命令切换你的环境以使用新安装的 go1.12.8:

[chris@marvin]$ gvm use go1.12.8
Now using version go1.12.8

[chris@marvin]$ go version
go version go1.12.8 linux/amd64

GVM 使管理已安装版本的 Go 变得极其简单,但它不止于此!

使用 GVM pkgset

开箱即用,Go 有一种出色而令人沮丧的管理包和模块的方式。默认情况下,如果你 go get 获取一个包,它将被下载到 $GOPATH 目录中的 srcpkg 目录下,然后可以使用 import 将其包含在你的 Go 程序中。这使得获得软件包变得很容易,特别是对于非特权用户,而不需要 sudo 或 root 特权(很像 Python 中的 pip install --user)。然而,在不同的项目中管理相同包的不同版本是非常困难的。

有许多方法可以尝试修复或缓解这个问题,包括实验性 Go Modules(Go 1.11 版中增加了初步支持)和 Go dep(Go Modules 的“官方实验”并且持续迭代)。在我发现 GVM 之前,我会在一个 Go 项目自己的 Docker 容器中构建和测试它,以确保分离。

GVM 通过使用 “pkgsets” 将项目的新目录附加到安装的 Go 版本的默认 $GOPATH 上,很好地实现了项目之间包的管理和隔离,就像 $PATH 在 Unix/Linux 系统上工作一样。

想象它如何运行的。首先,安装新版 Go 1.12.9:

[chris@marvin]$ echo $GOPATH
/home/chris/.gvm/pkgsets/go1.12.8/global

[chris@marvin]$ gvm install go1.12.9
Installing go1.12.9...
 * Compiling...
go1.12.9 successfully installed

[chris@marvin]$ gvm use go1.12.9
Now using version go1.12.9

当 GVM 被告知使用新版本时,它会更改为新的 $GOPATH,默认 gloabl pkgset 应用于该版本:

[chris@marvin]$ echo $GOPATH
/home/chris/.gvm/pkgsets/go1.12.9/global

[chris@marvin]$ gvm pkgset list

gvm go package sets (go1.12.9)

=>  global

尽管默认情况下没有安装额外的包,但是全局 pkgset 中的包对于使用该特定版本的 Go 的任何项目都是可用的。

现在,假设你正在启用一个新项目,它需要一个特定的包。首先,使用 GVM 创建一个新的 pkgset,名为 introToGvm:

[chris@marvin]$ gvm pkgset create introToGvm

[chris@marvin]$ gvm pkgset use introToGvm
Now using version go1.12.9@introToGvm

[chris@marvin]$ gvm pkgset list

gvm go package sets (go1.12.9)

    global
=>  introToGvm

如上所述,pkgset 的一个新目录被添加到 $GOPATH

[chris@marvin]$ echo $GOPATH
/home/chris/.gvm/pkgsets/go1.12.9/introToGvm:/home/chris/.gvm/pkgsets/go1.12.9/global

将目录更改为预先设置的 introToGvm 路径,检查目录结构,这里使用 awkbash 完成。

[chris@marvin]$ cd $( awk -F':' '{print $1}' <<< $GOPATH )
[chris@marvin]$ pwd
/home/chris/.gvm/pkgsets/go1.12.9/introToGvm

[chris@marvin]$ ls
overlay  pkg  src

请注意,新目录看起来很像普通的 $GOPATH。新的 Go 包使用同样的 go get 命令下载并正常使用,且添加到 pkgset 中。

例如,使用以下命令获取 gorilla/mux 包,然后检查 pkgset 的目录结构:

[chris@marvin]$ go get github.com/gorilla/mux
[chris@marvin]$ tree
[chris@marvin introToGvm ]$ tree
.
├── overlay
│   ├── bin
│   └── lib
│       └── pkgconfig
├── pkg
│   └── linux_amd64
│       └── github.com
│           └── gorilla
│               └── mux.a
src/
└── github.com
    └── gorilla
        └── mux
            ├── AUTHORS
            ├── bench_test.go
            ├── context.go
            ├── context_test.go
            ├── doc.go
            ├── example_authentication_middleware_test.go
            ├── example_cors_method_middleware_test.go
            ├── example_route_test.go
            ├── go.mod
            ├── LICENSE
            ├── middleware.go
            ├── middleware_test.go
            ├── mux.go
            ├── mux_test.go
            ├── old_test.go
            ├── README.md
            ├── regexp.go
            ├── route.go
            └── test_helpers.go

如你所见,gorilla/mux 已按预期添加到 pkgset $GOPATH 目录中,现在可用于使用此 pkgset 项目了。

GVM 让 Go 管理变得轻而易举

GVM 是一种直观且非侵入性的管理 Go 版本和包的方式。它可以单独使用,也可以与其他 Go 模块管理技术结合使用并利用 GVM Go 版本管理功能。按 Go 版本和包依赖来分离项目使得开发更加容易,并且减少了管理版本冲突的复杂性,GVM 让这变得轻而易举。


via: https://opensource.com/article/19/10/introduction-gvm

作者:Chris Collins 选题:lujun9972 译者:heguangzhi 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

二进制分析是计算机行业中最被低估的技能。

想象一下,在无法访问软件的源代码时,但仍然能够理解软件的实现方式,在其中找到漏洞,并且更厉害的是还能修复错误。所有这些都是在只有二进制文件时做到的。这听起来就像是超能力,对吧?

你也可以拥有这样的超能力,GNU 二进制实用程序(binutils)就是一个很好的起点。GNU binutils 是一个二进制工具集,默认情况下所有 Linux 发行版中都会安装这些二进制工具。

二进制分析是计算机行业中最被低估的技能。它主要由恶意软件分析师、反向工程师和使用底层软件的人使用。

本文探讨了 binutils 可用的一些工具。我使用的是 RHEL,但是这些示例应该在任何 Linux 发行版上可以运行。

[~]# cat /etc/redhat-release 
Red Hat Enterprise Linux Server release 7.6 (Maipo)
[~]# 
[~]# uname -r
3.10.0-957.el7.x86_64
[~]# 

请注意,某些打包命令(例如 rpm)在基于 Debian 的发行版中可能不可用,因此请使用等效的 dpkg 命令替代。

软件开发的基础知识

在开源世界中,我们很多人都专注于源代码形式的软件。当软件的源代码随时可用时,很容易获得源代码的副本,打开喜欢的编辑器,喝杯咖啡,然后就可以开始探索了。

但是源代码不是在 CPU 上执行的代码,在 CPU 上执行的是二进制或者说是机器语言指令。二进制或可执行文件是编译源代码时获得的。熟练的调试人员深谙通常这种差异。

编译的基础知识

在深入研究 binutils 软件包本身之前,最好先了解编译的基础知识。

编译是将程序从某种编程语言(如 C/C++)的源代码(文本形式)转换为机器代码的过程。

机器代码是 CPU(或一般而言,硬件)可以理解的 1 和 0 的序列,因此可以由 CPU 执行或运行。该机器码以特定格式保存到文件,通常称为可执行文件或二进制文件。在 Linux(和使用 Linux 兼容二进制的 BSD)上,这称为 ELF 可执行和可链接格式 Executable and Linkable Format )。

在生成给定的源文件的可执行文件或二进制文件之前,编译过程将经历一系列复杂的步骤。以这个源程序(C 代码)为例。打开你喜欢的编辑器,然后键入以下程序:

#include <stdio.h>

int main(void)
{
  printf("Hello World\n");
  return 0;
}

步骤 1:用 cpp 预处理

C 预处理程序(cpp)用于扩展所有宏并将头文件包含进来。在此示例中,头文件 stdio.h 将被包含在源代码中。stdio.h 是一个头文件,其中包含有关程序内使用的 printf 函数的信息。对源代码运行 cpp,其结果指令保存在名为 hello.i 的文件中。可以使用文本编辑器打开该文件以查看其内容。打印 “hello world” 的源代码在该文件的底部。

[testdir]# cat hello.c
#include <stdio.h>

int main(void)
{
  printf("Hello World\n");
  return 0;
}
[testdir]#
[testdir]# cpp hello.c > hello.i
[testdir]#
[testdir]# ls -lrt
total 24
-rw-r--r--. 1 root root 76 Sep 13 03:20 hello.c
-rw-r--r--. 1 root root 16877 Sep 13 03:22 hello.i
[testdir]#

步骤 2:用 gcc 编译

在此阶段,无需创建目标文件就将步骤 1 中生成的预处理源代码转换为汇编语言指令。这个阶段使用 GNU 编译器集合(gcc)。对 hello.i 文件运行带有 -S 选项的 gcc 命令后,它将创建一个名为 hello.s 的新文件。该文件包含该 C 程序的汇编语言指令。

你可以使用任何编辑器或 cat 命令查看其内容。

[testdir]#
[testdir]# gcc -Wall -S hello.i
[testdir]#
[testdir]# ls -l
total 28
-rw-r--r--. 1 root root 76 Sep 13 03:20 hello.c
-rw-r--r--. 1 root root 16877 Sep 13 03:22 hello.i
-rw-r--r--. 1 root root 448 Sep 13 03:25 hello.s
[testdir]#
[testdir]# cat hello.s
.file "hello.c"
.section .rodata
.LC0:
.string "Hello World"
.text
.globl main
.type main, @function
main:
.LFB0:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $.LC0, %edi
call puts
movl $0, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE0:
.size main, .-main
.ident "GCC: (GNU) 4.8.5 20150623 (Red Hat 4.8.5-36)"
.section .note.GNU-stack,"",@progbits
[testdir]#

步骤 3:用 as 汇编

汇编器的目的是将汇编语言指令转换为机器语言代码,并生成扩展名为 .o 的目标文件。此阶段使用默认情况下在所有 Linux 平台上都可用的 GNU 汇编器。

testdir]# as hello.s -o hello.o
[testdir]#
[testdir]# ls -l
total 32
-rw-r--r--. 1 root root 76 Sep 13 03:20 hello.c
-rw-r--r--. 1 root root 16877 Sep 13 03:22 hello.i
-rw-r--r--. 1 root root 1496 Sep 13 03:39 hello.o
-rw-r--r--. 1 root root 448 Sep 13 03:25 hello.s
[testdir]#

现在,你有了第一个 ELF 格式的文件;但是,还不能执行它。稍后,你将看到“ 目标文件 object file ”和“ 可执行文件 executable file ”之间的区别。

[testdir]# file hello.o
hello.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped

步骤 4:用 ld 链接

这是编译的最后阶段,将目标文件链接以创建可执行文件。可执行文件通常需要外部函数,这些外部函数通常来自系统库(libc)。

你可以使用 ld 命令直接调用链接器;但是,此命令有些复杂。相反,你可以使用带有 -v(详细)标志的 gcc 编译器,以了解链接是如何发生的。(使用 ld 命令进行链接作为一个练习,你可以自行探索。)

[testdir]# gcc -v hello.o
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/libexec/gcc/x86_64-redhat-linux/4.8.5/lto-wrapper
Target: x86_64-redhat-linux
Configured with: ../configure --prefix=/usr --mandir=/usr/share/man [...] --build=x86_64-redhat-linux
Thread model: posix
gcc version 4.8.5 20150623 (Red Hat 4.8.5-36) (GCC)
COMPILER_PATH=/usr/libexec/gcc/x86_64-redhat-linux/4.8.5/:/usr/libexec/gcc/x86_64-redhat-linux/4.8.5/:[...]:/usr/lib/gcc/x86_64-redhat-linux/
LIBRARY_PATH=/usr/lib/gcc/x86_64-redhat-linux/4.8.5/:/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../lib64/:/lib/../lib64/:/usr/lib/../lib64/:/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../:/lib/:/usr/lib/
COLLECT_GCC_OPTIONS='-v' '-mtune=generic' '-march=x86-64'
/usr/libexec/gcc/x86_64-redhat-linux/4.8.5/collect2 --build-id --no-add-needed --eh-frame-hdr --hash-style=gnu [...]/../../../../lib64/crtn.o
[testdir]#

运行此命令后,你应该看到一个名为 a.out 的可执行文件:

[testdir]# ls -l
total 44
-rwxr-xr-x. 1 root root 8440 Sep 13 03:45 a.out
-rw-r--r--. 1 root root 76 Sep 13 03:20 hello.c
-rw-r--r--. 1 root root 16877 Sep 13 03:22 hello.i
-rw-r--r--. 1 root root 1496 Sep 13 03:39 hello.o
-rw-r--r--. 1 root root 448 Sep 13 03:25 hello.s

a.out 运行 file 命令,结果表明它确实是 ELF 可执行文件:

[testdir]# file a.out
a.out: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.32, BuildID[sha1]=48e4c11901d54d4bf1b6e3826baf18215e4255e5, not stripped

运行该可执行文件,看看它是否如源代码所示工作:

[testdir]# ./a.out Hello World

工作了!在幕后发生了很多事情它才在屏幕上打印了 “Hello World”。想象一下在更复杂的程序中会发生什么。

探索 binutils 工具

上面这个练习为使用 binutils 软件包中的工具提供了良好的背景。我的系统带有 binutils 版本 2.27-34;你的 Linux 发行版上的版本可能有所不同。

[~]# rpm -qa | grep binutils 
binutils-2.27-34.base.el7.x86_64

binutils 软件包中提供了以下工具:

[~]# rpm -ql binutils-2.27-34.base.el7.x86_64 | grep bin/
/usr/bin/addr2line
/usr/bin/ar
/usr/bin/as
/usr/bin/c++filt
/usr/bin/dwp
/usr/bin/elfedit
/usr/bin/gprof
/usr/bin/ld
/usr/bin/ld.bfd
/usr/bin/ld.gold
/usr/bin/nm
/usr/bin/objcopy
/usr/bin/objdump
/usr/bin/ranlib
/usr/bin/readelf
/usr/bin/size
/usr/bin/strings
/usr/bin/strip

上面的编译练习已经探索了其中的两个工具:用作汇编器的 as 命令,用作链接器的 ld 命令。继续阅读以了解上述 GNU binutils 软件包工具中的其他七个。

readelf:显示 ELF 文件信息

上面的练习提到了术语“目标文件”和“可执行文件”。使用该练习中的文件,通过带有 -h(标题)选项的 readelf 命令,以将文件的 ELF 标题转储到屏幕上。请注意,以 .o 扩展名结尾的目标文件显示为 Type: REL (Relocatable file)(可重定位文件):

[testdir]# readelf -h hello.o
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 [...]
[...]
Type: REL (Relocatable file)
[...]

如果尝试执行此目标文件,会收到一条错误消息,指出无法执行。这仅表示它尚不具备在 CPU 上执行所需的信息。

请记住,你首先需要使用 chmod 命令在对象文件上添加 x(可执行位),否则你将得到“权限被拒绝”的错误。

[testdir]# ./hello.o
bash: ./hello.o: Permission denied
[testdir]# chmod +x ./hello.o
[testdir]#
[testdir]# ./hello.o
bash: ./hello.o: cannot execute binary file

如果对 a.out 文件尝试相同的命令,则会看到其类型为 EXEC (Executable file)(可执行文件)。

[testdir]# readelf -h a.out
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
[...] Type: EXEC (Executable file)

如上所示,该文件可以直接由 CPU 执行:

[testdir]# ./a.out Hello World

readelf 命令可提供有关二进制文件的大量信息。在这里,它会告诉你它是 ELF 64 位格式,这意味着它只能在 64 位 CPU 上执行,而不能在 32 位 CPU 上运行。它还告诉你它应在 X86-64(Intel/AMD)架构上执行。该二进制文件的入口点是地址 0x400430,它就是 C 源程序中 main 函数的地址。

在你知道的其他系统二进制文件上尝试一下 readelf 命令,例如 ls。请注意,在 RHEL 8 或 Fedora 30 及更高版本的系统上,由于安全原因改用了 位置无关可执行文件 position independent executable PIE),因此你的输出(尤其是 Type:)可能会有所不同。

[testdir]# readelf -h /bin/ls
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)

使用 ldd 命令了解 ls 命令所依赖的系统库,如下所示:

[testdir]# ldd /bin/ls
linux-vdso.so.1 => (0x00007ffd7d746000)
libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f060daca000)
libcap.so.2 => /lib64/libcap.so.2 (0x00007f060d8c5000)
libacl.so.1 => /lib64/libacl.so.1 (0x00007f060d6bc000)
libc.so.6 => /lib64/libc.so.6 (0x00007f060d2ef000)
libpcre.so.1 => /lib64/libpcre.so.1 (0x00007f060d08d000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f060ce89000)
/lib64/ld-linux-x86-64.so.2 (0x00007f060dcf1000)
libattr.so.1 => /lib64/libattr.so.1 (0x00007f060cc84000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f060ca68000)

libc 库文件运行 readelf 以查看它是哪种文件。正如它指出的那样,它是一个 DYN (Shared object file)(共享对象文件),这意味着它不能直接执行;必须由内部使用了该库提供的任何函数的可执行文件使用它。

[testdir]# readelf -h /lib64/libc.so.6
ELF Header:
Magic: 7f 45 4c 46 02 01 01 03 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - GNU
ABI Version: 0
Type: DYN (Shared object file)

size:列出节的大小和全部大小

size 命令仅适用于目标文件和可执行文件,因此,如果尝试在简单的 ASCII 文件上运行它,则会抛出错误,提示“文件格式无法识别”。

[testdir]# echo "test" > file1
[testdir]# cat file1
test
[testdir]# file file1
file1: ASCII text
[testdir]# size file1
size: file1: File format not recognized

现在,在上面的练习中,对目标文件和可执行文件运行 size 命令。请注意,根据 size 命令的输出可以看出,可执行文件(a.out)的信息要比目标文件(hello.o)多得多:

[testdir]# size hello.o
text data bss dec hex filename
89 0 0 89 59 hello.o
[testdir]# size a.out
text data bss dec hex filename
1194 540 4 1738 6ca a.out

但是这里的 textdatabss 节是什么意思?

text 节是指二进制文件的代码部分,其中包含所有可执行指令。data 节是所有初始化数据所在的位置,bss 节是所有未初始化数据的存储位置。(LCTT 译注:一般来说,在静态的映像文件中,各个部分称之为 section ,而在运行时的各个部分称之为 segment ,有时统称为段。)

比较其他一些可用的系统二进制文件的 size 结果。

对于 ls 命令:

[testdir]# size /bin/ls
text data bss dec hex filename
103119 4768 3360 111247 1b28f /bin/ls

只需查看 size 命令的输出,你就可以看到 gccgdb 是比 ls 大得多的程序:

[testdir]# size /bin/gcc
text data bss dec hex filename
755549 8464 81856 845869 ce82d /bin/gcc
[testdir]# size /bin/gdb
text data bss dec hex filename
6650433 90842 152280 6893555 692ff3 /bin/gdb

strings:打印文件中的可打印字符串

strings 命令中添加 -d 标志以仅显示 data 节中的可打印字符通常很有用。

hello.o 是一个目标文件,其中包含打印出 Hello World 文本的指令。因此,strings 命令的唯一输出是 Hello World

[testdir]# strings -d hello.o 
Hello World

另一方面,在 a.out(可执行文件)上运行 strings 会显示在链接阶段该二进制文件中包含的其他信息:

[testdir]# strings -d a.out
/lib64/ld-linux-x86-64.so.2
!^BU
libc.so.6
puts
__libc_start_main
__gmon_start__
GLIBC_2.2.5
UH-0
UH-0
=(
[]A\A]A^A_
Hello World
;*3$"

objdump:显示目标文件信息

另一个可以从二进制文件中转储机器语言指令的 binutils 工具称为 objdump。使用 -d 选项,可从二进制文件中反汇编出所有汇编指令。

回想一下,编译是将源代码指令转换为机器代码的过程。机器代码仅由 1 和 0 组成,人类难以阅读。因此,它有助于将机器代码表示为汇编语言指令。汇编语言是什么样的?请记住,汇编语言是特定于体系结构的;由于我使用的是 Intel(x86-64)架构,因此如果你使用 ARM 架构编译相同的程序,指令将有所不同。

[testdir]# objdump -d hello.o
hello.o: file format elf64-x86-64
Disassembly of section .text:
0000000000000000
:
0:  55              push %rbp
1:  48 89 e5        mov %rsp,%rbp
4:  bf 00 00 00 00  mov $0x0,%edi
9:  e8 00 00 00 00  callq e

e:  b8 00 00 00 00  mov $0x0,%eax
13: 5d              pop %rbp
14: c3              retq

该输出乍一看似乎令人生畏,但请花一点时间来理解它,然后再继续。回想一下,.text 节包含所有的机器代码指令。汇编指令可以在第四列中看到(即 pushmovcallqpopretq 等)。这些指令作用于寄存器,寄存器是 CPU 内置的存储器位置。本示例中的寄存器是 rbprspedieax 等,并且每个寄存器都有特殊的含义。

现在对可执行文件(a.out)运行 objdump 并查看得到的内容。可执行文件的 objdump 的输出可能很大,因此我使用 grep 命令将其缩小到 main 函数:

[testdir]# objdump -d a.out | grep -A 9 main\>
000000000040051d
:
40051d: 55              push %rbp
40051e: 48 89 e5        mov %rsp,%rbp
400521: bf d0 05 40 00  mov $0x4005d0,%edi
400526: e8 d5 fe ff ff  callq 400400
40052b: b8 00 00 00 00  mov $0x0,%eax
400530: 5d              pop %rbp
400531: c3              retq

请注意,这些指令与目标文件 hello.o 相似,但是其中包含一些其他信息:

  • 目标文件 hello.o 具有以下指令:callq e
  • 可执行文件 a.out 由以下指令组成,该指令带有一个地址和函数:callq 400400 <puts@plt> 上面的汇编指令正在调用 puts 函数。请记住,你在源代码中使用了一个 printf 函数。编译器插入了对 puts 库函数的调用,以将 Hello World 输出到屏幕。

查看 put 上方一行的说明:

  • 目标文件 hello.o 有个指令 movmov $0x0,%edi
  • 可执行文件 a.outmov 指令带有实际地址($0x4005d0)而不是 $0x0mov $0x4005d0,%edi

该指令将二进制文件中地址 $0x4005d0 处存在的内容移动到名为 edi 的寄存器中。

这个存储位置的内容中还能是别的什么吗?是的,你猜对了:它就是文本 Hello, World。你是如何确定的?

readelf 命令使你可以将二进制文件(a.out)的任何节转储到屏幕上。以下要求它将 .rodata(这是只读数据)转储到屏幕上:

[testdir]# readelf -x .rodata a.out

Hex dump of section '.rodata':
0x004005c0 01000200 00000000 00000000 00000000 ....
0x004005d0 48656c6c 6f20576f 726c6400 Hello World.

你可以在右侧看到文本 Hello World,在左侧可以看到其二进制格式的地址。它是否与你在上面的 mov 指令中看到的地址匹配?是的,确实匹配。

strip:从目标文件中剥离符号

该命令通常用于在将二进制文件交付给客户之前减小二进制文件的大小。

请记住,由于重要信息已从二进制文件中删除,因此它会妨碍调试。但是,这个二进制文件可以完美地执行。

a.out 可执行文件运行该命令,并注意会发生什么。首先,通过运行以下命令确保二进制文件没有被剥离(not stripped):

[testdir]# file a.out
a.out: ELF 64-bit LSB executable, x86-64, [......] not stripped

另外,在运行 strip 命令之前,请记下二进制文件中最初的字节数:

[testdir]# du -b a.out
8440 a.out

现在对该可执行文件运行 strip 命令,并使用 file 命令以确保正常完成:

[testdir]# strip a.out
[testdir]# file a.out a.out: ELF 64-bit LSB executable, x86-64, [......] stripped

剥离该二进制文件后,此小程序的大小从之前的 8440 字节减小为 6296 字节。对于这样小的一个程序都能有这么大的空间节省,难怪大型程序经常被剥离。

[testdir]# du -b a.out 
6296 a.out

addr2line:转换地址到文件名和行号

addr2line 工具只是在二进制文件中查找地址,并将其与 C 源代码程序中的行进行匹配。很酷,不是吗?

为此编写另一个测试程序;只是这一次确保使用 gcc-g 标志进行编译,这将为二进制文件添加其它调试信息,并包含有助于调试的行号(由源代码中提供):

[testdir]# cat -n atest.c
1  #include <stdio.h>
2
3  int globalvar = 100;
4
5  int function1(void)
6  {
7    printf("Within function1\n");
8    return 0;
9  }
10
11 int function2(void)
12 {
13   printf("Within function2\n");
14   return 0;
15 }
16
17 int main(void)
18 {
19   function1();
20   function2();
21   printf("Within main\n");
22   return 0;
23 }

-g 标志编译并执行它。正如预期:

[testdir]# gcc -g atest.c
[testdir]# ./a.out
Within function1
Within function2
Within main

现在使用 objdump 来标识函数开始的内存地址。你可以使用 grep 命令来过滤出所需的特定行。函数的地址在下面突出显示(55 push %rbp 前的地址):

[testdir]# objdump -d a.out | grep -A 2 -E 'main>:|function1>:|function2>:'
000000000040051d :
40051d: 55 push %rbp
40051e: 48 89 e5 mov %rsp,%rbp
--
0000000000400532 :
400532: 55 push %rbp
400533: 48 89 e5 mov %rsp,%rbp
--
0000000000400547
:
400547: 55 push %rbp
400548: 48 89 e5 mov %rsp,%rbp

现在,使用 addr2line 工具从二进制文件中的这些地址映射到 C 源代码匹配的地址:

[testdir]# addr2line -e a.out 40051d
/tmp/testdir/atest.c:6
[testdir]#
[testdir]# addr2line -e a.out 400532
/tmp/testdir/atest.c:12
[testdir]#
[testdir]# addr2line -e a.out 400547
/tmp/testdir/atest.c:18

它说 40051d 从源文件 atest.c 中的第 6 行开始,这是 function1 的起始大括号({)开始的行。function2main 的输出也匹配。

nm:列出目标文件的符号

使用上面的 C 程序测试 nm 工具。使用 gcc 快速编译并执行它。

[testdir]# gcc atest.c
[testdir]# ./a.out
Within function1
Within function2
Within main

现在运行 nmgrep 获取有关函数和变量的信息:

[testdir]# nm a.out | grep -Ei 'function|main|globalvar'
000000000040051d T function1
0000000000400532 T function2
000000000060102c D globalvar
U __libc_start_main@@GLIBC_2.2.5
0000000000400547 T main

你可以看到函数被标记为 T,它表示 text 节中的符号,而变量标记为 D,表示初始化的 data 节中的符号。

想象一下在没有源代码的二进制文件上运行此命令有多大用处?这使你可以窥视内部并了解使用了哪些函数和变量。当然,除非二进制文件已被剥离,这种情况下它们将不包含任何符号,因此 nm 就命令不会很有用,如你在此处看到的:

[testdir]# strip a.out
[testdir]# nm a.out | grep -Ei 'function|main|globalvar'
nm: a.out: no symbols

结论

GNU binutils 工具为有兴趣分析二进制文件的人提供了许多选项,这只是它们可以为你做的事情的冰山一角。请阅读每种工具的手册页,以了解有关它们以及如何使用它们的更多信息。


via: https://opensource.com/article/19/10/gnu-binutils

作者:Gaurav Kamathe 选题:lujun9972 译者:wxy 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

那些令人怀念的经典游戏可是提高编程能力的好素材。今天就让我们仔细探索一番,怎么用 Bash 编写一个扫雷程序。

我在编程教学方面不是专家,但当我想更好掌握某一样东西时,会试着找出让自己乐在其中的方法。比方说,当我想在 shell 编程方面更进一步时,我决定用 Bash 编写一个扫雷)游戏来加以练习。

如果你是一个有经验的 Bash 程序员,希望在提高技巧的同时乐在其中,那么请跟着我编写一个你的运行在终端中的扫雷游戏。完整代码可以在这个 GitHub 存储库中找到。

做好准备

在我编写任何代码之前,我列出了该游戏所必须的几个部分:

  1. 显示雷区
  2. 创建游戏逻辑
  3. 创建判断单元格是否可选的逻辑
  4. 记录可用和已查明(已排雷)单元格的个数
  5. 创建游戏结束逻辑

显示雷区

在扫雷中,游戏界面是一个由 2D 数组(列和行)组成的不透明小方格。每一格下都有可能藏有地雷。玩家的任务就是找到那些不含雷的方格,并且在这一过程中,不能点到地雷。这个 Bash 版本的扫雷使用 10x10 的矩阵,实际逻辑则由一个简单的 Bash 数组来完成。

首先,我先生成了一些随机数字。这将是地雷在雷区里的位置。控制地雷的数量,在开始编写代码之前,这么做会容易一些。实现这一功能的逻辑可以更好,但我这么做,是为了让游戏实现保持简洁,并有改进空间。(我编写这个游戏纯属娱乐,但如果你能将它修改的更好,我也是很乐意的。)

下面这些变量在整个过程中是不变的,声明它们是为了随机生成数字。就像下面的 a - g 的变量,它们会被用来计算可排除的地雷的值:

# 变量
score=0 # 会用来存放游戏分数
# 下面这些变量,用来随机生成可排除地雷的实际值
a="1 10 -10 -1"
b="-1 0 1"
c="0 1"
d="-1 0 1 -2 -3"
e="1 2 20 21 10 0 -10 -20 -23 -2 -1"
f="1 2 3 35 30 20 22 10 0 -10 -20 -25 -30 -35 -3 -2 -1"
g="1 4 6 9 10 15 20 25 30 -30 -24 -11 -10 -9 -8 -7"
#
# 声明
declare -a room  # 声明一个 room 数组,它用来表示雷区的每一格。

接下来,我会用列(0-9)和行(a-j)显示出游戏界面,并且使用一个 10x10 矩阵作为雷区。(M[10][10] 是一个索引从 0-99,有 100 个值的数组。) 如想了解更多关于 Bash 数组的内容,请阅读这本书那些关于 Bash 你所不了解的事: Bash 数组简介

创建一个叫 plough 的函数,我们先将标题显示出来:两个空行、列头,和一行 -,以示意往下是游戏界面:

printf '\n\n'
printf '%s' "     a   b   c   d   e   f   g   h   i   j"
printf '\n   %s\n' "-----------------------------------------"

然后,我初始化一个计数器变量,叫 r,它会用来记录已显示多少横行。注意,稍后在游戏代码中,我们会用同一个变量 r,作为我们的数组索引。 在 Bash for 循环中,用 seq 命令从 0 增加到 9。我用数字(d%)占位,来显示行号($row,由 seq 定义):

r=0 # 计数器
for row in $(seq 0 9); do
  printf '%d  ' "$row" # 显示 行数 0-9 

在我们接着往下做之前,让我们看看到现在都做了什么。我们先横着显示 [a-j] 然后再将 [0-9] 的行号显示出来,我们会用这两个范围,来确定用户排雷的确切位置。

接着,在每行中,插入列,所以是时候写一个新的 for 循环了。这一循环管理着每一列,也就是说,实际上是生成游戏界面的每一格。我添加了一些辅助函数,你能在源码中看到它的完整实现。 对每一格来说,我们需要一些让它看起来像地雷的东西,所以我们先用一个点(.)来初始化空格。为了实现这一想法,我们用的是一个叫 is_null_field 的自定义函数。 同时,我们需要一个存储每一格具体值的数组,这儿会用到之前已定义的全局数组 room , 并用 变量 r作为索引。随着 r 的增加,遍历所有单元格,并随机部署地雷。

  for col in $(seq 0 9); do
    ((r+=1))  # 循环完一列行数加一
    is_null_field $r  #  假设这里有个函数,它会检查单元格是否为空,为真,则此单元格初始值为点(.)
    printf '%s \e[33m%s\e[0m ' "|" "${room[$r]}" #  最后显示分隔符,注意,${room[$r]} 的第一个值为 '.',等于其初始值。
  #结束 col 循环
  done

最后,为了保持游戏界面整齐好看,我会在每行用一个竖线作为结尾,并在最后结束行循环:

printf '%s\n' "|"   # 显示出行分隔符
printf '   %s\n' "-----------------------------------------"
# 结束行循环
done
printf '\n\n'

完整的 plough 代码如下:

plough()
{
  r=0
  printf '\n\n'
  printf '%s' "     a   b   c   d   e   f   g   h   i   j"
  printf '\n   %s\n' "-----------------------------------------"
  for row in $(seq 0 9); do
    printf '%d  ' "$row"
    for col in $(seq 0 9); do
       ((r+=1))
       is_null_field $r
       printf '%s \e[33m%s\e[0m ' "|" "${room[$r]}"
    done
    printf '%s\n' "|"
    printf '   %s\n' "-----------------------------------------"
  done
  printf '\n\n'
}

我花了点时间来思考,is_null_field 的具体功能是什么。让我们来看看,它到底能做些什么。在最开始,我们需要游戏有一个固定的状态。你可以随便选择个初始值,可以是一个数字或者任意字符。我最后决定,所有单元格的初始值为一个点(.),因为我觉得,这样会让游戏界面更好看。下面就是这一函数的完整代码:

is_null_field()
{
  local e=$1 # 在数组 room 中,我们已经用过循环变量 'r' 了,这次我们用 'e'
    if [[ -z "${room[$e]}" ]];then
      room[$r]="."  #这里用点(.)来初始化每一个单元格
    fi
}

现在,我已经初始化了所有的格子,现在只要用一个很简单的函数就能得出当前游戏中还有多少单元格可以操作:

get_free_fields()
{
  free_fields=0    # 初始化变量 
  for n in $(seq 1 ${#room[@]}); do
    if [[ "${room[$n]}" = "." ]]; then  # 检查当前单元格是否等于初始值(.),结果为真,则记为空余格子。 
      ((free_fields+=1))
    fi
  done
}

这是显示出来的游戏界面,[a-j] 为列,[0-9] 为行。

 title=

创建玩家逻辑

玩家操作背后的逻辑在于,先从 stdin) 中读取数据作为坐标,然后再找出对应位置实际包含的值。这里用到了 Bash 的参数扩展,来设法得到行列数。然后将代表列数的字母传给分支语句,从而得到其对应的列数。为了更好地理解这一过程,可以看看下面这段代码中,变量 o 所对应的值。 举个例子,玩家输入了 c3,这时 Bash 将其分成两个字符:c3。为了简单起见,我跳过了如何处理无效输入的部分。

  colm=${opt:0:1}  # 得到第一个字符,一个字母
  ro=${opt:1:1}    # 得到第二个字符,一个整数
  case $colm in
    a ) o=1;;      # 最后,通过字母得到对应列数。
    b ) o=2;;
    c ) o=3;;
    d ) o=4;;
    e ) o=5;;
    f ) o=6;;
    g ) o=7;;
    h ) o=8;;
    i ) o=9;;
    j ) o=10;;
  esac

下面的代码会计算用户所选单元格实际对应的数字,然后将结果储存在变量中。

这里也用到了很多的 shuf 命令,shuf 是一个专门用来生成随机序列的 Linux 命令-i 选项后面需要提供需要打乱的数或者范围,-n 选项则规定输出结果最多需要返回几个值。Bash 中,可以在两个圆括号内进行数学计算,这里我们会多次用到。

还是沿用之前的例子,玩家输入了 c3。 接着,它被转化成了 ro=3o=3。 之后,通过上面的分支语句代码, 将 c 转化为对应的整数,带进公式,以得到最终结果 i 的值。

  i=$(((ro*10)+o))   # 遵循运算规则,算出最终值
  is_free_field $i $(shuf -i 0-5 -n 1)   #  调用自定义函数,判断其指向空/可选择单元格。

仔细观察这个计算过程,看看最终结果 i 是如何计算出来的:

i=$(((ro*10)+o))
i=$(((3*10)+3))=$((30+3))=33

最后结果是 33。在我们的游戏界面显示出来,玩家输入坐标指向了第 33 个单元格,也就是在第 3 行(从 0 开始,否则这里变成 4),第 3 列。

创建判断单元格是否可选的逻辑

为了找到地雷,在将坐标转化,并找到实际位置之后,程序会检查这一单元格是否可选。如不可选,程序会显示一条警告信息,并要求玩家重新输入坐标。

在这段代码中,单元格是否可选,是由数组里对应的值是否为点(.)决定的。如果可选,则重置单元格对应的值,并更新分数。反之,因为其对应值不为点,则设置变量 not_allowed。为简单起见,游戏中警告消息这部分源码,我会留给读者们自己去探索。

is_free_field()
{
  local f=$1
  local val=$2
  not_allowed=0
  if [[ "${room[$f]}" = "." ]]; then
    room[$f]=$val
    score=$((score+val))
  else
    not_allowed=1
  fi
}

 title=

如输入坐标有效,且对应位置为地雷,如下图所示。玩家输入 h6,游戏界面会出现一些随机生成的值。在发现地雷后,这些值会被加入用户得分。

 title=

还记得我们开头定义的变量,a - g 吗,我会用它们来确定随机生成地雷的具体值。所以,根据玩家输入坐标,程序会根据(m)中随机生成的数,来生成周围其他单元格的值(如上图所示)。之后将所有值和初始输入坐标相加,最后结果放在 i(计算结果如上)中。

请注意下面代码中的 X,它是我们唯一的游戏结束标志。我们将它添加到随机列表中。在 shuf 命令的魔力下,X 可以在任意情况下出现,但如果你足够幸运的话,也可能一直不会出现。

m=$(shuf -e a b c d e f g X -n 1)   # 将 X 添加到随机列表中,当 m=X,游戏结束
  if [[ "$m" != "X" ]]; then        # X 将会是我们爆炸地雷(游戏结束)的触发标志
    for limit in ${!m}; do          # !m 代表 m 变量的值
      field=$(shuf -i 0-5 -n 1)     # 然后再次获得一个随机数字
      index=$((i+limit))            # 将 m 中的每一个值和 index 加起来,直到列表结尾
      is_free_field $index $field
    done

我想要游戏界面中,所有随机显示出来的单元格,都靠近玩家选择的单元格。

 title=

记录已选择和可用单元格的个数

这个程序需要记录游戏界面中哪些单元格是可选择的。否则,程序会一直让用户输入数据,即使所有单元格都被选中过。为了实现这一功能,我创建了一个叫 free_fields 的变量,初始值为 0。用一个 for 循环,记录下游戏界面中可选择单元格的数量。 如果单元格所对应的值为点(.),则 free_fields 加一。

get_free_fields()
{
  free_fields=0
  for n in $(seq 1 ${#room[@]}); do
    if [[ "${room[$n]}" = "." ]]; then
      ((free_fields+=1))
    fi
  done
}

等下,如果 free_fields=0 呢? 这意味着,玩家已选择过所有单元格。如果想更好理解这一部分,可以看看这里的源代码

if [[ $free_fields -eq 0 ]]; then   # 这意味着你已选择过所有格子
      printf '\n\n\t%s: %s %d\n\n' "You Win" "you scored" "$score"
      exit 0
fi

创建游戏结束逻辑

对于游戏结束这种情况,我们这里使用了一些很巧妙的技巧,将结果在屏幕中央显示出来。我把这部分留给读者朋友们自己去探索。

if [[ "$m" = "X" ]]; then
    g=0                      # 为了在参数扩展中使用它
    room[$i]=X               # 覆盖此位置原有的值,并将其赋值为X
    for j in {42..49}; do    # 在游戏界面中央,
      out="gameover"
      k=${out:$g:1}          # 在每一格中显示一个字母
      room[$j]=${k^^}
      ((g+=1))
    done
fi

最后,我们显示出玩家最关心的两行。

if [[ "$m" = "X" ]]; then
      printf '\n\n\t%s: %s %d\n' "GAMEOVER" "you scored" "$score"
      printf '\n\n\t%s\n\n' "You were just $free_fields mines away."
      exit 0
fi

 title=

文章到这里就结束了,朋友们!如果你想了解更多,具体可以查看我的 GitHub 存储库,那儿有这个扫雷游戏的源代码,并且你还能找到更多用 Bash 编写的游戏。 我希望,这篇文章能激起你学习 Bash 的兴趣,并乐在其中。


via: https://opensource.com/article/19/9/advanced-bash-building-minesweeper

作者:Abhishek Tamrakar 选题:lujun9972 译者:wenwensnow 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出