Carla Schroder 发布的文章

在这个两篇的系列当中,我们将学习关于 IPv6 私有地址的知识,以及如何在 KVM 中配置测试网络。

要理解 IPv6 地址是如何工作的,没有比亲自动手去实践更好的方法了,在 KVM 中配置一个小的测试实验室非常容易 —— 也很有趣。这个系列的文章共有两个部分,我们将学习关于 IPv6 私有地址的知识,以及如何在 KVM 中配置测试网络。

QEMU/KVM/虚拟机管理器

我们先来了解什么是 KVM。在这里,我将使用 KVM 来表示 QEMU、KVM、以及虚拟机管理器的一个组合,虚拟机管理器在 Linux 发行版中一般都内置了。简单解释就是,QEMU 模拟硬件,而 KVM 是一个内核模块,它在你的 CPU 上创建一个 “访客领地”,并去管理它们对内存和 CPU 的访问。虚拟机管理器是一个涵盖虚拟化和管理程序的图形工具。

但是你不能被图形界面下 “点击” 操作的方式 “缠住” ,因为,它们也有命令行工具可以使用 —— 比如 virshvirt-install

如果你在使用 KVM 方面没有什么经验,你可以从 在 KVM 中创建虚拟机:第 1 部分在 KVM 中创建虚拟机:第 2 部分 - 网络 开始学起。

IPv6 唯一本地地址

在 KVM 中配置 IPv6 网络与配置 IPv4 网络很类似。它们的主要不同在于这些怪异的长地址。上一次,我们讨论了 IPv6 地址的不同类型。其中有一个 IPv6 单播地址类,fc00::/7(详细情况请查阅 RFC 4193),它类似于 IPv4 中的私有地址 —— 10.0.0.0/8172.16.0.0/12、和 192.168.0.0/16

下图解释了这个唯一本地地址空间的结构。前 48 位定义了前缀和全局 ID,随后的 16 位是子网,剩余的 64 位是接口 ID:

| 7 bits |1|  40 bits   |  16 bits  |          64 bits           |
+--------+-+------------+-----------+----------------------------+
| Prefix |L| Global ID  | Subnet ID |        Interface ID        |
+--------+-+------------+-----------+----------------------------+

下面是另外一种表示方法,它可能更有助于你理解这些地址是如何管理的:

| Prefix |  Global ID   |  Subnet ID  |   Interface ID       |
+--------+--------------+-------------+----------------------+
|   fd   | 00:0000:0000 |    0000     | 0000:0000:0000:0000  |
+--------+--------------+-------------+----------------------+

fc00::/7 共分成两个 /8 地址块,fc00::/8fd00::/8fc00::/8 是为以后使用保留的。因此,唯一本地地址通常都是以 fd 开头的,而剩余部分是由你使用的。L 位,也就是第八位,它总是设置为 1,这样它可以表示为 fd00::/8。设置为 0 时,它就表示为 fc00::/8。你可以使用 subnetcalc 来看到这些东西:

$ subnetcalc fd00::/8 -n
Address  = fd00::
            fd00 = 11111101 00000000

$ subnetcalc fc00::/8 -n
Address  = fc00::
            fc00 = 11111100 00000000

RFC 4193 要求地址必须随机产生。你可以用你选择的任何方法来造出个地址,只要它们以 fd 打头就可以,因为 IPv6 范围非常大,它不会因为地址耗尽而无法使用。当然,最佳实践还是按 RFC 的要求来做。地址不能按顺序分配或者使用众所周知的数字。RFC 4193 包含一个构建伪随机地址生成器的算法,或者你可以找到各种在线生成器。

唯一本地地址不像全局单播地址(它由你的因特网服务提供商分配)那样进行中心化管理,即使如此,发生地址冲突的可能性也是非常低的。当你需要去合并一些本地网络或者想去在不相关的私有网络之间路由时,这是一个非常好的优势。

在同一个子网中,你可以混用唯一本地地址和全局单播地址。唯一本地地址是可路由的,并且它并不会因此要求对路由器做任何调整。但是,你应该在你的边界路由器和防火墙上配置为不允许它们离开你的网络,除非是在不同位置的两个私有网络之间。

RFC4193 建议,不要混用全局单播地址的 AAAA 和 PTR 记录,因为虽然它们重复的机率非常低,但是并不能保证它们就是独一无二的。就像我们使用的 IPv4 地址一样,要保持你本地的私有名称服务和公共名称服务的独立。将本地名称服务使用的 Dnsmasq 和公共名称服务使用的 BIND 组合起来,是一个在 IPv4 网络上经过实战检验的可靠组合,这个组合也同样适用于 IPv6 网络。

伪随机地址生成器

在线地址生成器的一个示例是 本地 IPv6 地址生成器。你可以在线找到许多这样很酷的工具。你可以使用它来为你创建一个新地址,或者使用它在你的现有全局 ID 下为你创建子网。

下周我们将讲解如何在 KVM 中配置这些 IPv6 的地址,并现场测试它们。

通过来自 Linux 基金会和 edX 的免费在线课程 “Linux 入门” 学习更多的 Linux 知识。


via: https://www.linux.com/learn/intro-to-linux/2017/11/testing-ipv6-networking-kvm-part-1

作者:Carla Schroder 译者:qhwdw 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

未加密的 HTTP 会话暴露于滥用之中,用 Let's Encrypt 把它们保护起来。

曾几何时,通过证书授权机构搭建基本的 HTTPS 网站需要每年花费数百美元,而且搭建的过程复杂且容易出错。现在我们免费使用 Let's Encrypt,而且搭建过程也只需要几分钟。

为何进行加密?

为什么要加密网站呢?这是因为未经加密的 HTTP 会话可以被多种方式滥用:

网络服务提供商就是最大的代码注入者。那么如何挫败它们的非法行径呢?你最好的防御手段就是 HTTPS。让我们回顾一下 HTTPS 的工作原理。

信任链

你可以在你的网站和每个授权访问用户之间建立非对称加密。这是一种非常强的保护:GPG(GNU Privacy Guard, 参考如何在 Linux 中加密邮件)和 OpenSSH 就是非对称加密的通用工具。它们依赖于公钥-私钥对,其中公钥可以任意分享,但私钥必须受到保护且不能分享。公钥用于加密,私钥用于解密。

但上述方法无法适用于随机的网页浏览,因为建立会话之前需要交换公钥,你需要生成并管理密钥对。HTTPS 会话可以自动完成公钥分发,而且购物或银行之类的敏感网站还会使用第三方证书颁发机构(CA)验证证书,例如 Comodo、 Verisign 和 Thawte。

当你访问一个 HTTPS 网站时,网站给你的网页浏览器返回了一个数字证书。这个证书说明你的会话被强加密,而且提供了该网站信息,包括组织名称、颁发证书的组织和证书颁发机构名称等。你可以点击网页浏览器地址栏的小锁头来查看这些信息(图 1),也包括了证书本身。

 title=

图1: 点击网页浏览器地址栏上的锁头标记查看信息

包括 Opera、 Chromium 和 Chrome 在内的主流浏览器,验证网站数字证书的合法性都依赖于证书颁发机构。小锁头标记可以让你一眼看出证书状态;绿色意味着使用强 SSL 加密且运营实体经过验证。网页浏览器还会对恶意网站、SSL 证书配置有误的网站和不被信任的自签名证书网站给出警告。

那么网页浏览器如何判断网站是否可信呢?浏览器自带根证书库,包含了一系列根证书,存储在 /usr/share/ca-certificates/mozilla/ 之类的地方。网站证书是否可信可以通过根证书库进行检查。就像你 Linux 系统上其它软件那样,根证书库也由包管理器维护。对于 Ubuntu,对应的包是 ca-certificates,这个 Linux 根证书库本身是由 Mozilla 维护的。

可见,整个工作流程需要复杂的基础设施才能完成。在你进行购物或金融等敏感在线操作时,你信任了无数陌生人对你的保护。

无处不加密

Let's Encrypt 是一家全球证书颁发机构,类似于其它商业根证书颁发机构。Let's Encrpt 由非营利性组织 因特网安全研究小组 Internet Security Research Group (ISRG)创立,目标是简化网站的安全加密。在我看来,出于后面我会提到的原因,该证书不足以胜任购物及银行网站的安全加密,但很适合加密博客、新闻和信息门户这类不涉及金融操作的网站。

使用 Let's Encrypt 有三种方式。推荐使用 电子前沿基金会 Electronic Frontier Foundation (EFF)开发的 Cerbot 客户端。使用该客户端需要在网站服务器上执行 shell 操作。

如果你使用的是共享托管主机,你很可能无法执行 shell 操作。这种情况下,最简单的方法是使用支持 Let's Encrpt 的托管主机

如果你的托管主机不支持 Let's Encrypt,但支持自定义证书,那么你可以使用 Certbot 手动创建并上传你的证书。这是一个复杂的过程,你需要彻底地研究文档。

安装证书后,使用 SSL 服务器测试来测试你的服务器。

Let's Encrypt 的电子证书有效期为 90 天。Certbot 安装过程中添加了一个证书自动续期的计划任务,也提供了测试证书自动续期是否成功的命令。允许使用已有的私钥或 证书签名请求 certificate signing request (CSR),允许创建通配符证书。

限制

Let's Encrypt 有如下限制:它只执行域名验证,即只要有域名控制权就可以获得证书。这是比较基础的 SSL。它不支持 组织验证 Organization Validation (OV)或 扩展验证 Extended Validation (EV),因为运营实体验证无法自动完成。我不会信任使用 Let's Encrypt 证书的购物或银行网站,它们应该购买支持运营实体验证的完整版本。

作为非营利性组织提供的免费服务,不提供商业支持,只提供不错的文档和社区支持。

因特网中恶意无处不在,一切数据都应该加密。从使用 Let's Encrypt 保护你的网站用户开始吧。

想要学习更多 Linux 知识,请参考 Linux 基金会和 edX 提供的免费课程 “Linux 入门”


via: https://www.linux.com/learn/intro-to-linux/2018/3/protect-your-websites-lets-encrypt

作者:CARLA SCHRODER 选题:lujun9972 译者:pinewall 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

最重要的公共服务之一就是 报时 timekeeping ,但是很多人并没有意识到这一点。大多数公共时间服务器都是由志愿者管理,以满足不断增长的需求。这里学习一下如何运行你自己的时间服务器,为基础公共利益做贡献。(查看 在 Linux 上使用 NTP 保持精确时间 去学习如何设置一台局域网时间服务器)

著名的时间服务器滥用事件

就像现实生活中任何一件事情一样,即便是像时间服务器这样的公益项目,也会遭受不称职的或者恶意的滥用。

消费类网络设备的供应商因制造了大混乱而臭名昭著。我回想起的第一件事发生在 2003 年,那时,NetGear 在它们的路由器中硬编码了威斯康星大学的 NTP 时间服务器地址。使得时间服务器的查询请求突然增加,随着 NetGear 卖出越来越多的路由器,这种情况越发严重。更有意思的是,路由器的程序设置是每秒钟发送一次请求,这将使服务器难堪重负。后来 Netgear 发布了升级固件,但是,升级他们的设备的用户很少,并且他们的其中一些用户的设备,到今天为止,还在不停地每秒钟查询一次威斯康星大学的 NTP 服务器。Netgear 给威斯康星大学捐献了一些钱,以帮助弥补他们带来的成本增加,直到这些路由器全部淘汰。类似的事件还有 D-Link、Snapchat、TP-Link 等等。

对 NTP 协议进行反射和放大,已经成为发起 DDoS 攻击的一个选择。当攻击者使用一个伪造的目标受害者的源地址向时间服务器发送请求,称为反射攻击;攻击者发送请求到多个服务器,这些服务器将回复请求,这样就使伪造的源地址受到轰炸。放大攻击是指一个很小的请求收到大量的回复信息。例如,在 Linux 上,ntpq 命令是一个查询你的 NTP 服务器并验证它们的系统时间是否正确的很有用的工具。一些回复,比如,对端列表,是非常大的。组合使用反射和放大,攻击者可以将 10 倍甚至更多带宽的数据量发送到被攻击者。

那么,如何保护提供公益服务的公共 NTP 服务器呢?从使用 NTP 4.2.7p26 或者更新的版本开始,它们可以帮助你的 Linux 发行版不会发生前面所说的这种问题,因为它们都是在 2010 年以后发布的。这个发行版都默认禁用了最常见的滥用攻击。目前,最新版本是 4.2.8p10,它发布于 2017 年。

你可以采用的另一个措施是,在你的网络上启用入站和出站过滤器。阻塞宣称来自你的网络的数据包进入你的网络,以及拦截发送到伪造返回地址的出站数据包。入站过滤器可以帮助你,而出站过滤器则帮助你和其他人。阅读 BCP38.info 了解更多信息。

层级为 0、1、2 的时间服务器

NTP 有超过 30 年的历史了,它是至今还在使用的最老的因特网协议之一。它的用途是保持计算机与世界标准时间(UTC)的同步。NTP 网络是分层组织的,并且同层的设备是对等的。 层次 Stratum 0 包含主报时设备,比如,原子钟。层级 1 的时间服务器与层级 0 的设备同步。层级 2 的设备与层级 1 的设备同步,层级 3 的设备与层级 2 的设备同步。NTP 协议支持 16 个层级,现实中并没有使用那么多的层级。同一个层级的服务器是相互对等的。

过去很长一段时间内,我们都为客户端选择配置单一的 NTP 服务器,而现在更好的做法是使用 NTP 服务器地址池,它使用轮询的 DNS 信息去共享负载。池地址只是为客户端服务的,比如单一的 PC 和你的本地局域网 NTP 服务器。当你运行一台自己的公共服务器时,你不用使用这些池地址。

公共 NTP 服务器配置

运行一台公共 NTP 服务器只有两步:设置你的服务器,然后申请加入到 NTP 服务器池。运行一台公共的 NTP 服务器是一种很高尚的行为,但是你得先知道这意味着什么。加入 NTP 服务器池是一种长期责任,因为即使你加入服务器池后,运行了很短的时间马上退出,然后接下来的很多年你仍然会接收到请求。

你需要一个静态的公共 IP 地址,一个至少 512Kb/s 带宽的、可靠的、持久的因特网连接。NTP 使用的是 UDP 的 123 端口。它对机器本身要求并不高,很多管理员在其它的面向公共的服务器(比如,Web 服务器)上顺带架设了 NTP 服务。

配置一台公共的 NTP 服务器与配置一台用于局域网的 NTP 服务器是一样的,只需要几个配置。我们从阅读 协议规则 开始。遵守规则并注意你的行为;几乎每个时间服务器的维护者都是像你这样的志愿者。然后,从 StratumTwoTimeServers 中选择 4 到 7 个层级 2 的上游服务器。选择的时候,选取地理位置上靠近(小于 300 英里的)你的因特网服务提供商的上游服务器,阅读他们的访问规则,然后,使用 pingmtr 去找到延迟和跳数最小的服务器。

以下的 /etc/ntp.conf 配置示例文件,包括了 IPv4 和 IPv6,以及基本的安全防护:

# stratum 2 server list
server servername_1 iburst
server servername_2 iburst
server servername_3 iburst
server servername_4 iburst
server servername_5 iburst

# access restrictions
restrict -4 default kod noquery nomodify notrap nopeer limited
restrict -6 default kod noquery nomodify notrap nopeer limited

# Allow ntpq and ntpdc queries only from localhost
restrict 127.0.0.1
restrict ::1

启动你的 NTP 服务器,让它运行几分钟,然后测试它对远程服务器的查询:

$ ntpq -p
 remote refid st t when poll reach delay offset jitter
=================================================================
+tock.no-such-ag 200.98.196.212 2 u 36 64 7 98.654 88.439 65.123
+PBX.cytranet.ne 45.33.84.208 3 u 37 64 7 72.419 113.535 129.313
*eterna.binary.n 199.102.46.70 2 u 39 64 7 92.933 98.475 56.778
+time.mclarkdev. 132.236.56.250 3 u 37 64 5 111.059 88.029 74.919

目前表现很好。现在从另一台 PC 上使用你的 NTP 服务器名字进行测试。以下的示例是一个正确的输出。如果有不正确的地方,你将看到一些错误信息。

$ ntpdate -q yourservername
server 66.96.99.10, stratum 2, offset 0.017690, delay 0.12794
server 98.191.213.2, stratum 1, offset 0.014798, delay 0.22887
server 173.49.198.27, stratum 2, offset 0.020665, delay 0.15012
server 129.6.15.28, stratum 1, offset -0.018846, delay 0.20966
26 Jan 11:13:54 ntpdate[17293]: adjust time server 98.191.213.2 offset 0.014798 sec

一旦你的服务器运行的很好,你就可以向 manage.ntppool.org 申请加入池中。

查看官方的手册 分布式网络时间服务器(NTP) 学习所有的命令、配置选项、以及高级特性,比如,管理、查询、和验证。访问以下的站点学习关于运行一台时间服务器所需要的一切东西。

通过来自 Linux 基金会和 edX 的免费课程 “Linux 入门” 学习更多 Linux 的知识。


via: https://www.linux.com/learn/intro-to-linux/2018/2/how-run-your-own-public-time-server-linux

作者:CARLA SCHRODER 译者:qhwdw 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

如何保持正确的时间,如何使用 NTP 和 systemd 让你的计算机在不滥用时间服务器的前提下保持同步。

它的时间是多少?

让 Linux 来告诉你时间的时候,它是很奇怪的。你可能认为是使用 time 命令来告诉你时间,其实并不是,因为 time 只是一个测量一个进程运行了多少时间的计时器。为得到时间,你需要运行的是 date 命令,你想查看更多的日期,你可以运行 cal 命令。文件上的时间戳也是一个容易混淆的地方,因为根据你的发行版默认情况不同,它一般有两种不同的显示方法。下面是来自 Ubuntu 16.04 LTS 的示例:

$ ls -l
drwxrwxr-x 5 carla carla 4096 Mar 27 2017 stuff
drwxrwxr-x 2 carla carla 4096 Dec 8 11:32 things
-rw-rw-r-- 1 carla carla 626052 Nov 21 12:07 fatpdf.pdf
-rw-rw-r-- 1 carla carla 2781 Apr 18 2017 oddlots.txt

有些显示年,有些显示时间,这样的方式让你的文件更混乱。GNU 默认的情况是,如果你的文件在六个月以内,则显示时间而不是年。我想这样做可能是有原因的。如果你的 Linux 是这样的,尝试用 ls -l --time-style=long-iso 命令,让时间戳用同一种方式去显示,按字母顺序排序。请查阅 如何更改 Linux 的日期和时间:简单的命令 去学习 Linux 上管理时间的各种方法。

检查当前设置

NTP —— 网络时间协议,它是保持计算机正确时间的老式方法。ntpd 是 NTP 守护程序,它通过周期性地查询公共时间服务器来按需调整你的计算机时间。它是一个简单的、轻量级的协议,使用它的基本功能时设置非常容易。systemd 通过使用 systemd-timesyncd.service 已经越俎代庖地 “干了 NTP 的活”,它可以用作 ntpd 的客户端。

在我们开始与 NTP “打交道” 之前,先花一些时间来了检查一下当前的时间设置是否正确。

你的系统上(至少)有两个时钟:系统时间 —— 它由 Linux 内核管理,第二个是你的主板上的硬件时钟,它也称为实时时钟(RTC)。当你进入系统的 BIOS 时,你可以看到你的硬件时钟的时间,你也可以去改变它的设置。当你安装一个新的 Linux 时,在一些图形化的时间管理器中,你会被询问是否设置你的 RTC 为 UTC( 世界标准时间 Coordinated Universal Time )时区,因为所有的时区和夏令时都是基于 UTC 的。你可以使用 hwclock 命令去检查:

$ sudo hwclock --debug
hwclock from util-linux 2.27.1
Using the /dev interface to the clock.
Hardware clock is on UTC time
Assuming hardware clock is kept in UTC time.
Waiting for clock tick...
...got clock tick
Time read from Hardware Clock: 2018/01/22 22:14:31
Hw clock time : 2018/01/22 22:14:31 = 1516659271 seconds since 1969
Time since last adjustment is 1516659271 seconds
Calculated Hardware Clock drift is 0.000000 seconds
Mon 22 Jan 2018 02:14:30 PM PST .202760 seconds

Hardware clock is on UTC time 表明了你的计算机的 RTC 是使用 UTC 时间的,虽然它把该时间转换为你的本地时间。如果它被设置为本地时间,它将显示 Hardware clock is on local time

你应该有一个 /etc/adjtime 文件。如果没有的话,使用如下命令同步你的 RTC 为系统时间,

$ sudo hwclock -w

这个命令将生成该文件,内容看起来类似如下:

$ cat /etc/adjtime
0.000000 1516661953 0.000000
1516661953
UTC

新发明的 systemd 方式是去运行 timedatectl 命令,运行它不需要 root 权限:

$ timedatectl
 Local time: Mon 2018-01-22 14:17:51 PST
 Universal time: Mon 2018-01-22 22:17:51 UTC
 RTC time: Mon 2018-01-22 22:17:51
 Time zone: America/Los_Angeles (PST, -0800)
 Network time on: yes
NTP synchronized: yes
 RTC in local TZ: no

RTC in local TZ: no 表明它使用 UTC 时间。那么怎么改成使用本地时间?这里有许多种方法可以做到。最简单的方法是使用一个图形配置工具,比如像 openSUSE 中的 YaST。你也可使用 timedatectl

$ timedatectl set-local-rtc 0

或者编辑 /etc/adjtime,将 UTC 替换为 LOCAL

systemd-timesyncd 客户端

现在,我已经累了,但是我们刚到非常精彩的部分。谁能想到计时如此复杂?我们甚至还没有了解到它的皮毛;阅读 man 8 hwclock 去了解你的计算机如何保持时间的详细内容。

systemd 提供了 systemd-timesyncd.service 客户端,它可以查询远程时间服务器并调整你的本地系统时间。在 /etc/systemd/timesyncd.conf 中配置你的(时间)服务器。大多数 Linux 发行版都提供了一个默认配置,它指向他们维护的时间服务器上,比如,以下是 Fedora 的:

[Time]
#NTP=
#FallbackNTP=0.fedora.pool.ntp.org 1.fedora.pool.ntp.org

你可以输入你希望使用的其它时间服务器,比如你自己的本地 NTP 服务器,在 NTP= 行上输入一个以空格分隔的服务器列表。(别忘了取消这一行的注释)NTP= 行上的任何内容都将覆盖掉 FallbackNTP 行上的配置项。

如果你不想使用 systemd 呢?那么,你将需要 NTP 就行。

配置 NTP 服务器和客户端

配置你自己的局域网 NTP 服务器是一个非常好的实践,这样你的网内计算机就不需要不停查询公共 NTP 服务器。在大多数 Linux 上的 NTP 都来自 ntp 包,它们大多都提供 /etc/ntp.conf 文件去配置时间服务器。查阅 NTP 时间服务器池 去找到你所在的区域的合适的 NTP 服务器池。然后在你的 /etc/ntp.conf 中输入 4 - 5 个服务器,每个服务器用单独的一行:

driftfile /var/ntp.drift
logfile /var/log/ntp.log
server 0.europe.pool.ntp.org
server 1.europe.pool.ntp.org
server 2.europe.pool.ntp.org
server 3.europe.pool.ntp.org

driftfile 告诉 ntpd 它需要保存用于启动时使用时间服务器快速同步你的系统时钟的信息。而日志也将保存在他们自己指定的目录中,而不是转储到 syslog 中。如果你的 Linux 发行版默认提供了这些文件,请使用它们。

现在去启动守护程序;在大多数主流的 Linux 中它的命令是 sudo systemctl start ntpd。让它运行几分钟之后,我们再次去检查它的状态:

$ ntpq -p
 remote refid st t when poll reach delay offset jitter
==============================================================
+dev.smatwebdesi 192.168.194.89 3 u 25 64 37 92.456 -6.395 18.530
*chl.la 127.67.113.92 2 u 23 64 37 75.175 8.820 8.230
+four0.fairy.mat 35.73.197.144 2 u 22 64 37 116.272 -10.033 40.151
-195.21.152.161 195.66.241.2 2 u 27 64 37 107.559 1.822 27.346

我不知道这些内容是什么意思,但重要的是,你的守护程序已经与时间服务器开始对话了,而这正是我们所需要的。你可以去运行 sudo systemctl enable ntpd 命令,永久启用它。如果你的 Linux 没有使用 systemd,那么,给你留下的家庭作业就是找出如何去运行 ntpd

现在,你可以在你的局域网中的其它计算机上设置 systemd-timesyncd,这样它们就可以使用你的本地 NTP 服务器了,或者,在它们上面安装 NTP,然后在它们的 /etc/ntp.conf 上输入你的本地 NTP 服务器。

NTP 服务器会受到攻击,而且需求在不断增加。你可以通过运行你自己的公共 NTP 服务器来提供帮助。下周我们将学习如何运行你自己的公共服务器。

通过来自 Linux 基金会和 edX 的免费课程 “Linux 入门” 来学习更多 Linux 的知识。


via: https://www.linux.com/learn/intro-to-linux/2018/1/keep-accurate-time-linux-ntp

作者:CARLA SCHRODER 译者:qhwdw 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

许多人熟知并热爱 Dnsmasq,并在他们的本地域名服务上使用它。今天我们将介绍进阶配置文件管理、如何测试你的配置、一些基础的安全知识、DNS 泛域名、快速 DNS 配置,以及其他一些技巧与窍门。下个星期我们将继续详细讲解如何配置 DNS 和 DHCP。

测试配置

当你测试新的配置的时候,你应该从命令行运行 Dnsmasq,而不是使用守护进程。下面的例子演示了如何不用守护进程运行它,同时显示指令的输出并保留运行日志:

# dnsmasq --no-daemon --log-queries
dnsmasq: started, version 2.75 cachesize 150
dnsmasq: compile time options: IPv6 GNU-getopt
 DBus i18n IDN DHCP DHCPv6 no-Lua TFTP conntrack
 ipset auth DNSSEC loop-detect inotify
dnsmasq: reading /etc/resolv.conf
dnsmasq: using nameserver 192.168.0.1#53
dnsmasq: read /etc/hosts - 9 addresses

在这个小例子中你能看到许多有用的信息,包括版本、编译参数、系统名字服务文件,以及它的监听地址。可以使用 Ctrl+C 停止进程。在默认情况下,Dnsmasq 没有自己的日志文件,所以日志会被记录到 /var/log 目录下的多个地方。你可以使用经典的 grep 来找到 Dnsmasq 的日志文件。下面这条指令会递归式地搜索 /var/log,在每个匹配的文件名之后显示匹配的行号,并忽略 /var/log/dist-upgrade 里的内容:

# grep -ir --exclude-dir=dist-upgrade dnsmasq /var/log/

使用 grep --exclude-dir= 时有一个有趣的小陷阱需要注意:不要使用完整路径,而应该只写目录名称。

你可以使用如下的命令行参数来让 Dnsmasq 使用你指定的文件作为它专属的日志文件:

# dnsmasq --no-daemon --log-queries --log-facility=/var/log/dnsmasq.log

或者在你的 Dnsmasq 配置文件中加上 log-facility=/var/log/dnsmasq.log

配置文件

Dnsmasq 的配置文件位于 /etc/dnsmasq.conf。你的 Linux 发行版也可能会使用 /etc/default/dnsmasq/etc/dnsmasq.d/,或者 /etc/dnsmasq.d-available/(不,我们不能统一标准,因为这违反了 Linux 七嘴八舌秘密议会 Linux Cat Herd Ruling Cabal 的旨意)。你有很多自由来随意安置你的配置文件。

/etc/dnsmasq.conf 是德高望重的老大。Dnsmasq 在启动时会最先读取它。/etc/dnsmasq.conf 可以使用 conf-file= 选项来调用其他的配置文件,例如 conf-file=/etc/dnsmasqextrastuff.conf,或使用 conf-dir= 选项来调用目录下的所有文件,例如 conf-dir=/etc/dnsmasq.d

每当你对配置文件进行了修改,你都必须重启 Dnsmasq。

你也可以根据扩展名来包含或忽略配置文件。星号表示包含,不加星号表示排除:

conf-dir=/etc/dnsmasq.d/, *.conf, *.foo
conf-dir=/etc/dnsmasq.d, .old, .bak, .tmp

你可以用 --addn-hosts= 选项来把你的主机配置分布在多个文件中。

Dnsmasq 包含了一个语法检查器:

$ dnsmasq --test
dnsmasq: syntax check OK.

实用配置

永远加入这几行:

domain-needed
bogus-priv

它们可以避免含有格式出错的域名或私有 IP 地址的数据包离开你的网络。

让你的名字服务只使用 Dnsmasq,而不去使用 /etc/resolv.conf 或任何其他的名字服务文件:

no-resolv

使用其他的域名服务器。第一个例子是只对于某一个域名使用不同的域名服务器。第二个和第三个例子是 OpenDNS 公用服务器:

server=/fooxample.com/192.168.0.1
server=208.67.222.222
server=208.67.220.220

你也可以将某些域名限制为只能本地解析,但不影响其他域名。这些被限制的域名只能从 /etc/hosts 或 DHCP 解析:

local=/mehxample.com/
local=/fooxample.com/

限制 Dnsmasq 监听的网络接口:

interface=eth0
interface=wlan1

Dnsmasq 在默认设置下会读取并使用 /etc/hosts。这是一个又快又好的配置大量域名的方法,并且 /etc/hosts 只需要和 Dnsmasq 在同一台电脑上。你还可以让这个过程再快一些,可以在 /etc/hosts 文件中只写主机名,然后用 Dnsmasq 来添加域名。/etc/hosts 看上去是这样的:

127.0.0.1 localhost
192.168.0.1 host2
192.168.0.2 host3
192.168.0.3 host4

然后把下面这几行写入 dnsmasq.conf(当然,要换成你自己的域名):

expand-hosts
domain=mehxample.com

Dnsmasq 会自动把这些主机名扩展为完整的域名,比如 host2 会变为 host2.mehxample.com

DNS 泛域名

一般来说,使用 DNS 泛域名不是一个好习惯,因为它们太容易被误用了。但它们有时会很有用,比如在你的局域网的严密保护之下的时候。一个例子是使用 DNS 泛域名会让 Kubernetes 集群变得容易管理许多,除非你喜欢给你成百上千的应用写 DNS 记录。假设你的 Kubernetes 域名是 mehxample.com,那么下面这行配置可以让 Dnsmasq 解析所有对 mehxample.com 的请求:

address=/mehxample.com/192.168.0.5

这里使用的地址是你的集群的公网 IP 地址。这会响应对 mehxample.com 的所有主机名和子域名的请求,除非请求的目标地址已经在 DHCP 或者 /etc/hosts 中配置过。

下星期我们将探索更多的管理 DNS 和 DHCP 的细节,包括对不同的子网络使用不同的设置,以及提供权威域名服务器。

更多参考


via: https://www.linux.com/learn/intro-to-linux/2018/2/advanced-dnsmasq-tips-and-tricks

作者:CARLA SCHRODER 译者:yixunx 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

KVM 中测试 IPv6 网络:第 1 部分 一文中,我们学习了关于 唯一本地地址 unique local addresses (ULA)的相关内容。在本文中,我们将学习如何为 ULA 自动配置 IP 地址。

何时使用唯一本地地址

唯一本地地址 unique local addresses (ULA)使用 fd00::/8 地址块,它类似于我们常用的 IPv4 的私有地址:10.0.0.0/8172.16.0.0/12、以及 192.168.0.0/16。但它们并不能直接替换。IPv4 的私有地址分类和网络地址转换(NAT)功能是为了缓解 IPv4 地址短缺的问题,这是个明智的解决方案,它延缓了本该被替换的 IPv4 的生命周期。IPv6 也支持 NAT,但是我想不出使用它的理由。IPv6 的地址数量远远大于 IPv4;它是不一样的,因此需要做不一样的事情。

那么,ULA 存在的意义是什么呢?尤其是在我们已经有了 本地链路地址 link-local addresses fe80::/10)时,到底需不需要我们去配置它们呢?它们之间(LCTT 译注:指的是唯一本地地址和本地链路地址)有两个重要的区别。一是,本地链路地址是不可路由的,因此,你不能跨子网使用它。二是,ULA 是你自己管理的;你可以自己选择它用于子网的地址范围,并且它们是可路由的。

使用 ULA 的另一个好处是,如果你只是在局域网中“混日子”的话,你不需要为它们分配全局单播 IPv6 地址。当然了,如果你的 ISP 已经为你分配了 IPv6 的 全局单播地址 global unicast addresses ,就不需要使用 ULA 了。你也可以在同一个网络中混合使用全局单播地址和 ULA,但是,我想不出这样使用的一个好理由,并且要一定确保你不使用网络地址转换(NAT)以使 ULA 可公共访问。在我看来,这是很愚蠢的行为。

ULA 是仅为私有网络使用的,并且应该阻止其流出你的网络,不允许进入因特网。这很简单,在你的边界设备上只要阻止整个 fd00::/8 范围的 IPv6 地址即可实现。

地址自动配置

ULA 不像本地链路地址那样自动配置的,但是使用 radvd 设置自动配置是非常容易的,radva 是路由器公告守护程序。在你开始之前,运行 ifconfig 或者 ip addr show 去查看你现有的 IP 地址。

在生产系统上使用时,你应该将 radvd 安装在一台单独的路由器上,如果只是测试使用,你可以将它安装在你的网络中的任意 Linux PC 上。在我的小型 KVM 测试实验室中,我使用 apt-get install radvd 命令把它安装在 Ubuntu 上。安装完成之后,我先不启动它,因为它还没有配置文件:

$ sudo systemctl status radvd
● radvd.service - LSB: Router Advertising Daemon
   Loaded: loaded (/etc/init.d/radvd; bad; vendor preset: enabled)
   Active: active (exited) since Mon 2017-12-11 20:08:25 PST; 4min 59s ago
     Docs: man:systemd-sysv-generator(8)

Dec 11 20:08:25 ubunut1 systemd[1]: Starting LSB: Router Advertising Daemon...
Dec 11 20:08:25 ubunut1 radvd[3541]: Starting radvd:
Dec 11 20:08:25 ubunut1 radvd[3541]: * /etc/radvd.conf does not exist or is empty.
Dec 11 20:08:25 ubunut1 radvd[3541]: * See /usr/share/doc/radvd/README.Debian
Dec 11 20:08:25 ubunut1 radvd[3541]: * radvd will *not* be started.
Dec 11 20:08:25 ubunut1 systemd[1]: Started LSB: Router Advertising Daemon.

这些所有的消息有点让人困惑,实际上 radvd 并没有运行,你可以使用经典命令 ps | grep radvd 来验证这一点。因此,我们现在需要去创建 /etc/radvd.conf 文件。拷贝这个示例,将第一行的网络接口名替换成你自己的接口名字:

interface ens7 {
  AdvSendAdvert on;
  MinRtrAdvInterval 3;
  MaxRtrAdvInterval 10;
  prefix fd7d:844d:3e17:f3ae::/64
        {
                AdvOnLink on;
                AdvAutonomous on;
        };

};

前缀(prefix)定义了你的网络地址,它是地址的前 64 位。前两个字符必须是 fd,前缀接下来的剩余部分你自己定义它,最后的 64 位留空,因为 radvd 将去分配最后的 64 位。前缀后面的 16 位用来定义子网,剩余的地址定义为主机地址。你的子网必须总是 /64。RFC 4193 要求地址必须随机生成;查看 在 KVM 中测试 IPv6 Networking:第 1 部分 学习创建和管理 ULAs 的更多知识。

IPv6 转发

IPv6 转发必须要启用。下面的命令去启用它,重启后生效:

$ sudo sysctl -w net.ipv6.conf.all.forwarding=1

取消注释或者添加如下的行到 /etc/sysctl.conf 文件中,以使它永久生效:

net.ipv6.conf.all.forwarding = 1

启动 radvd 守护程序:

$ sudo systemctl stop radvd
$ sudo systemctl start radvd

这个示例在我的 Ubuntu 测试系统中遇到了一个怪事;radvd 总是停止,我查看它的状态却没有任何问题,做任何改变之后都需要重新启动 radvd。

启动成功后没有任何输出,并且失败也是如此,因此,需要运行 sudo systemctl status radvd 去查看它的运行状态。如果有错误,systemctl 会告诉你。一般常见的错误都是 /etc/radvd.conf 中的语法错误。

在 Twitter 上抱怨了上述问题之后,我学到了一件很酷的技巧:当你运行 journalctl -xe --no-pager 去调试 systemctl 错误时,你的输出会被换行,然后,你就可以看到错误信息。

现在检查你的主机,查看它们自动分配的新地址:

$ ifconfig
ens7      Link encap:Ethernet  HWaddr 52:54:00:57:71:50  
          [...]
          inet6 addr: fd7d:844d:3e17:f3ae:9808:98d5:bea9:14d9/64 Scope:Global
          [...]

本文到此为止,下周继续学习如何为 ULA 管理 DNS,这样你就可以使用一个合适的主机名来代替这些长长的 IPv6 地址。

通过来自 Linux 基金会和 edX 的 “Linux 入门” 免费课程学习更多 Linux 的知识。


via: https://www.linux.com/learn/intro-to-linux/2017/12/ipv6-auto-configuration-linux

作者:Carla Schroder 译者:qhwdw 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出