Michael Mccune 发布的文章

学习如何使用 spaCy、vaderSentiment、Flask 和 Python 来为你的作品添加情感分析能力。

本系列的第一部分提供了情感分析工作原理的一些背景知识,现在让我们研究如何将这些功能添加到你的设计中。

探索 Python 库 spaCy 和 vaderSentiment

前提条件

  • 一个终端 shell
  • shell 中的 Python 语言二进制文件(3.4+ 版本)
  • 用于安装 Python 包的 pip 命令
  • (可选)一个 Python 虚拟环境使你的工作与系统隔离开来

配置环境

在开始编写代码之前,你需要安装 spaCyvaderSentiment 包来设置 Python 环境,同时下载一个语言模型来帮助你分析。幸运的是,大部分操作都容易在命令行中完成。

在 shell 中,输入以下命令来安装 spaCy 和 vaderSentiment 包:

pip install spacy vaderSentiment

命令安装完成后,安装 spaCy 可用于文本分析的语言模型。以下命令将使用 spaCy 模块下载并安装英语模型

python -m spacy download en_core_web_sm

安装了这些库和模型之后,就可以开始编码了。

一个简单的文本分析

使用 Python 解释器交互模式 编写一些代码来分析单个文本片段。首先启动 Python 环境:

$ python
Python 3.6.8 (default, Jan 31 2019, 09:38:34)
[GCC 8.2.1 20181215 (Red Hat 8.2.1-6)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

(你的 Python 解释器版本打印可能与此不同。)

1、导入所需模块:

>>> import spacy
>>> from vaderSentiment import vaderSentiment 

2、从 spaCy 加载英语语言模型:

>>> english = spacy.load("en_core_web_sm")

3、处理一段文本。本例展示了一个非常简单的句子,我们希望它能给我们带来些许积极的情感:

>>> result = english("I like to eat applesauce with sugar and cinnamon.")

4、从处理后的结果中收集句子。SpaCy 已识别并处理短语中的实体,这一步为每个句子生成情感(即时在本例中只有一个句子):

>>> sentences = [str(s) for s in result.sents]

5、使用 vaderSentiments 创建一个分析器:

>>> analyzer = vaderSentiment.SentimentIntensityAnalyzer()

6、对句子进行情感分析:

>>> sentiment = [analyzer.polarity_scores(str(s)) for s in sentences]

sentiment 变量现在包含例句的极性分数。打印出这个值,看看它是如何分析这个句子的。

>>> print(sentiment)
[{'neg': 0.0, 'neu': 0.737, 'pos': 0.263, 'compound': 0.3612}]

这个结构是什么意思?

表面上,这是一个只有一个字典对象的数组。如果有多个句子,那么每个句子都会对应一个字典对象。字典中有四个键对应不同类型的情感。neg 键表示负面情感,因为在本例中没有报告任何负面情感,0.0 值证明了这一点。neu 键表示中性情感,它的得分相当高,为 0.737(最高为 1.0)。pos 键代表积极情感,得分适中,为 0.263。最后,cmpound 键代表文本的总体得分,它可以从负数到正数,0.3612 表示积极方面的情感多一点。

要查看这些值可能如何变化,你可以使用已输入的代码做一个小实验。以下代码块显示了如何对类似句子的情感评分的评估。

>>> result = english("I love applesauce!")
>>> sentences = [str(s) for s in result.sents]
>>> sentiment = [analyzer.polarity_scores(str(s)) for s in sentences]
>>> print(sentiment)
[{'neg': 0.0, 'neu': 0.182, 'pos': 0.818, 'compound': 0.6696}]

你可以看到,通过将例句改为非常积极的句子,sentiment 的值发生了巨大变化。

建立一个情感分析服务

现在你已经为情感分析组装了基本的代码块,让我们将这些东西转化为一个简单的服务。

在这个演示中,你将使用 Python Flask 包 创建一个 RESTful HTTP 服务器。此服务将接受英文文本数据并返回情感分析结果。请注意,此示例服务是用于学习所涉及的技术,而不是用于投入生产的东西。

前提条件

  • 一个终端 shell
  • shell 中的 Python 语言二进制文件(3.4+ 版本)
  • 安装 Python 包的 pip 命令
  • curl 命令
  • 一个文本编辑器
  • (可选) 一个 Python 虚拟环境使你的工作与系统隔离开来

配置环境

这个环境几乎与上一节中的环境相同,唯一的区别是在 Python 环境中添加了 Flask 包。

1、安装所需依赖项:

pip install spacy vaderSentiment flask

2、安装 spaCy 的英语语言模型:

python -m spacy download en_core_web_sm

创建应用程序文件

打开编辑器,创建一个名为 app.py 的文件。添加以下内容 (不用担心,我们将解释每一行)

import flask
import spacy
import vaderSentiment.vaderSentiment as vader

app = flask.Flask(__name__)
analyzer = vader.SentimentIntensityAnalyzer()
english = spacy.load("en_core_web_sm")

def get_sentiments(text):
    result = english(text)
    sentences = [str(sent) for sent in result.sents]
    sentiments = [analyzer.polarity_scores(str(s)) for s in sentences]
    return sentiments

@app.route("/", methods=["POST", "GET"])
def index():
    if flask.request.method == "GET":
        return "To access this service send a POST request to this URL with" \
                " the text you want analyzed in the body."
    body = flask.request.data.decode("utf-8")
    sentiments = get_sentiments(body)
    return flask.json.dumps(sentiments)

虽然这个源文件不是很大,但它非常密集。让我们来看看这个应用程序的各个部分,并解释它们在做什么。

import flask
import spacy
import vaderSentiment.vaderSentiment as vader

前三行引入了执行语言分析和 HTTP 框架所需的包。

app = flask.Flask(__name__)
analyzer = vader.SentimentIntensityAnalyzer()
english = spacy.load("en_core_web_sm")

接下来的三行代码创建了一些全局变量。第一个变量 app,它是 Flask 用于创建 HTTP 路由的主要入口点。第二个变量 analyzer 与上一个示例中使用的类型相同,它将用于生成情感分数。最后一个变量 english 也与上一个示例中使用的类型相同,它将用于注释和标记初始文本输入。

你可能想知道为什么全局声明这些变量。对于 app 变量,这是许多 Flask 应用程序的标准过程。但是,对于 analyzerenglish 变量,将它们设置为全局变量的决定是基于与所涉及的类关联的加载时间。虽然加载时间可能看起来很短,但是当它在 HTTP 服务器的上下文中运行时,这些延迟会对性能产生负面影响。

def get_sentiments(text):
    result = english(text)
    sentences = [str(sent) for sent in result.sents]
    sentiments = [analyzer.polarity_scores(str(s)) for s in sentences]
    return sentiments

这部分是服务的核心 —— 一个用于从一串文本生成情感值的函数。你可以看到此函数中的操作对应于你之前在 Python 解释器中运行的命令。这里它们被封装在一个函数定义中,text 源作为文本变量传入,最后 sentiments 变量返回给调用者。

@app.route("/", methods=["POST", "GET"])
def index():
  if flask.request.method == "GET":
      return "To access this service send a POST request to this URL with" \
              " the text you want analyzed in the body."
  body = flask.request.data.decode("utf-8")
  sentiments = get_sentiments(body)
  return flask.json.dumps(sentiments)

源文件的最后一个函数包含了指导 Flask 如何为服务配置 HTTP 服务器的逻辑。它从一行开始,该行将 HTTP 路由 / 与请求方法 POSTGET 相关联。

在函数定义行之后,if 子句将检测请求方法是否为 GET。如果用户向服务发送此请求,那么下面的行将返回一条指示如何访问服务器的文本消息。这主要是为了方便最终用户。

下一行使用 flask.request 对象来获取请求的主体,该主体应包含要处理的文本字符串。decode 函数将字节数组转换为可用的格式化字符串。经过解码的文本消息被传递给 get_sentiments 函数以生成情感分数。最后,分数通过 HTTP 框架返回给用户。

你现在应该保存文件,如果尚未保存,那么返回 shell。

运行情感服务

一切就绪后,使用 Flask 的内置调试服务器运行服务非常简单。要启动该服务,请从与源文件相同的目录中输入以下命令:

FLASK_APP=app.py flask run

现在,你将在 shell 中看到来自服务器的一些输出,并且服务器将处于运行状态。要测试服务器是否正在运行,你需要打开第二个 shell 并使用 curl 命令。

首先,输入以下命令检查是否打印了指令信息:

curl http://localhost:5000

你应该看到说明消息:

To access this service send a POST request to this URI with the text you want analyzed in the body.

接下来,运行以下命令发送测试消息,查看情感分析:

curl http://localhost:5000 --header "Content-Type: application/json" --data "I love applesauce!"

你从服务器获得的响应应类似于以下内容:

[{"compound": 0.6696, "neg": 0.0, "neu": 0.182, "pos": 0.818}]

恭喜!你现在已经实现了一个 RESTful HTTP 情感分析服务。你可以在 GitHub 上找到此服务的参考实现和本文中的所有代码

继续探索

现在你已经了解了自然语言处理和情感分析背后的原理和机制,下面是进一步发现探索该主题的一些方法。

在 OpenShift 上创建流式情感分析器

虽然创建本地应用程序来研究情绪分析很方便,但是接下来需要能够部署应用程序以实现更广泛的用途。按照Radnaalytics.io 提供的指导和代码进行操作,你将学习如何创建一个情感分析仪,可以容器化并部署到 Kubernetes 平台。你还将了解如何将 Apache Kafka 用作事件驱动消息传递的框架,以及如何将 Apache Spark 用作情绪分析的分布式计算平台。

使用 Twitter API 发现实时数据

虽然 Radanalytics.io 实验室可以生成合成推文流,但你可以不受限于合成数据。事实上,拥有 Twitter 账户的任何人都可以使用 Tweepy Python 包访问 Twitter 流媒体 API 对推文进行情感分析。


via: https://opensource.com/article/19/4/social-media-sentiment-analysis-python-scalable

作者:Michael McCune 选题:lujun9972 译者:MjSeven 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

学习自然语言处理的基础知识并探索两个有用的 Python 包。

自然语言处理(NLP)是机器学习的一种,它解决了口语或书面语言和计算机辅助分析这些语言之间的相关性。日常生活中我们经历了无数的 NLP 创新,从写作帮助和建议到实时语音翻译,还有口译。

本文研究了 NLP 的一个特定领域:情感分析。重点是确定输入语言的积极、消极或中性性质。本部分将解释 NLP 和情感分析的背景,并探讨两个开源的 Python 包。第 2 部分将演示如何开始构建自己的可扩展情感分析服务。

在学习情感分析时,对 NLP 有一个大体了解是有帮助的。本文不会深入研究数学本质。相反,我们的目标是阐明 NLP 中的关键概念,这些概念对于将这些方法实际结合到你的解决方案中至关重要。

自然语言和文本数据

合理的起点是从定义开始:“什么是自然语言?”它是我们人类相互交流的方式,沟通的主要方式是口语和文字。我们可以更进一步,只关注文本交流。毕竟,生活在 Siri、Alexa 等无处不在的时代,我们知道语音是一组与文本无关的计算。

数据前景和挑战

我们只考虑使用文本数据,我们可以对语言和文本做什么呢?首先是语言,特别是英语,除了规则还有很多例外,含义的多样性和语境差异,这些都可能使人类口译员感到困惑,更不用说计算机翻译了。在小学,我们学习文章和标点符号,通过讲母语,我们获得了寻找直觉上表示唯一意义的词的能力。比如,出现诸如 “a”、“the” 和 “or” 之类的文章,它们在 NLP 中被称为停止词,因为传统上 NLP 算法是在一个序列中找到这些词时意味着搜索停止。

由于我们的目标是自动将文本分类为情感类,因此我们需要一种以计算方式处理文本数据的方法。因此,我们必须考虑如何向机器表示文本数据。众所周知,利用和解释语言的规则很复杂,输入文本的大小和结构可能会有很大差异。我们需要将文本数据转换为数字数据,这是机器和数学的首选方式。这种转变属于特征提取的范畴。

在提取输入文本数据的数字表示形式后,一个改进可能是:给定一个文本输入体,为上面列出的文章确定一组向量统计数据,并根据这些数据对文档进行分类。例如,过多的副词可能会使撰稿人感到愤怒,或者过度使用停止词可能有助于识别带有内容填充的学期论文。诚然,这可能与我们情感分析的目标没有太大关系。

词袋

当你评估一个文本陈述是积极还是消极的时候,你使用哪些上下文来评估它的极性?(例如,文本中是否具有积极的、消极的或中性的情感)一种方式是隐含形容词:被称为 “disgusting”(恶心) 的东西被认为是消极的,但如果同样的东西被称为 “beautiful”(漂亮),你会认为它是积极的。从定义上讲,俗语给人一种熟悉感,通常是积极的,而脏话可能是敌意的表现。文本数据也可以包括表情符号,它带有固定的情感。

理解单个单词的极性影响为文本的 词袋 bag-of-words (BoW)模型提供了基础。它分析一组单词或词汇表,并提取关于这些单词在输入文本中是否存在的度量。词汇表是通过处理已知极性的文本形成称为标记的训练数据。从这组标记数据中提取特征,然后分析特征之间的关系,并将标记与数据关联起来。

“词袋”这个名称说明了它的用途:即不考虑空间位置或上下文的的单个词。词汇表通常是由训练集中出现的所有单词构建的,训练后往往会被修剪。如果在训练之前没有清理停止词,那么停止词会因为其高频率和低语境而被移除。很少使用的单词也可以删除,因为缺乏为一般输入实例提供的信息。

但是,重要的是要注意,你可以(并且应该)进一步考虑单词在单个训练数据实例之外的情形,这称为 词频 term frequency (TF)。你还应该考虑输入数据在所有训练实例中的单词计数,通常,出现在所有文档中的低频词更重要,这被称为 逆文本频率指数 inverse document frequency (IDF)。这些指标一定会在本主题系列的其他文章和软件包中提及,因此了解它们会有所帮助。

词袋在许多文档分类应用程序中很有用。然而,在情感分析中,当缺乏情境意识的问题被利用时,事情就可以解决。考虑以下句子:

  • 我们不喜欢这场战争。
  • 我讨厌下雨天,好事是今天是晴天。
  • 这不是生死攸关的问题。

这些短语的情感对于人类口译员来说是有难度的,而且通过严格关注单个词汇的实例,对于机器翻译来说也是困难的。

在 NLP 中也可以使用称为 “n-grams” 的单词分组。一个二元组考虑两个相邻单词组成的组而不是(或除了)单个词袋。这应该可以缓解诸如上述“不喜欢”之类的情况,但由于缺乏语境意思,它仍然是个问题。此外,在上面的第二句中,下半句的情感语境可以被理解为否定前半部分。因此,这种方法中也会丢失上下文线索的空间局部性。从实用角度来看,使问题复杂化的是从给定输入文本中提取的特征的稀疏性。对于一个完整的大型词汇表,每个单词都有一个计数,可以将其视为一个整数向量。大多数文档的向量中都有大量的零计数向量,这给操作增加了不必要的空间和时间复杂度。虽然已经提出了许多用于降低这种复杂性的简便方法,但它仍然是一个问题。

词嵌入

词嵌入 Word embedding 是一种分布式表示,它允许具有相似含义的单词具有相似的表示。这是基于使用实值向量来与它们周围相关联。重点在于使用单词的方式,而不仅仅是它们的存在与否。此外,词嵌入的一个巨大实用优势是它们关注于密集向量。通过摆脱具有相应数量的零值向量元素的单词计数模型,词嵌入在时间和存储方面提供了一个更有效的计算范例。

以下是两个优秀的词嵌入方法。

Word2vec

第一个是 Word2vec,它是由 Google 开发的。随着你对 NLP 和情绪分析研究的深入,你可能会看到这种嵌入方法。它要么使用一个 连续的词袋 continuous bag of words (CBOW),要么使用一个连续 skip-gram 模型。在 CBOW 中,一个单词的上下文是在训练中根据围绕它的单词来学习的。连续 skip-gram 学习倾向于围绕给定的单词学习单词。虽然这可能超出了你需要解决的问题,但是如果你曾经面对必须生成自己的词嵌入情况,那么 Word2vec 的作者就提倡使用 CBOW 方法来提高速度并评估频繁的单词,而 skip-gram 方法更适合嵌入稀有单词更重要的嵌入。

GloVe

第二个是 用于词表示的全局向量 Global Vectors for Word Representation (GloVe),它是斯坦福大学开发的。它是 Word2vec 方法的扩展,试图通过将经典的全局文本统计特征提取获得的信息与 Word2vec 确定的本地上下文信息相结合。实际上,在一些应用程序中,GloVe 性能优于 Word2vec,而在另一些应用程序中则不如 Word2vec。最终,用于词嵌入的目标数据集将决定哪种方法最优。因此,最好了解它们的存在性和高级机制,因为你很可能会遇到它们。

创建和使用词嵌入

最后,知道如何获得词嵌入是有用的。在第 2 部分中,你将看到我们通过利用社区中其他人的实质性工作,站到了巨人的肩膀上。这是获取词嵌入的一种方法:即使用现有的经过训练和验证的模型。实际上,有无数的模型适用于英语和其他语言,一定会有一种模型可以满足你的应用程序,让你开箱即用!

如果没有的话,就开发工作而言,另一个极端是培训你自己的独立模型,而不考虑你的应用程序。实质上,你将获得大量标记的训练数据,并可能使用上述方法之一来训练模型。即使这样,你仍然只是在理解你输入文本数据。然后,你需要为你应用程序开发一个特定的模型(例如,分析软件版本控制消息中的情感价值),这反过来又需要自己的时间和精力。

你还可以对针对你的应用程序的数据训练一个词嵌入,虽然这可以减少时间和精力,但这个词嵌入将是特定于应用程序的,这将会降低它的可重用性。

可用的工具选项

考虑到所需的大量时间和计算能力,你可能想知道如何才能找到解决问题的方法。的确,开发可靠模型的复杂性可能令人望而生畏。但是,有一个好消息:已经有许多经过验证的模型、工具和软件库可以为我们提供所需的大部分内容。我们将重点关注 Python,因为它为这些应用程序提供了大量方便的工具。

SpaCy

SpaCy 提供了许多用于解析输入文本数据和提取特征的语言模型。它经过了高度优化,并被誉为同类中最快的库。最棒的是,它是开源的!SpaCy 会执行标识化、词性分类和依赖项注释。它包含了用于执行此功能的词嵌入模型,还有用于为超过 46 种语言的其他特征提取操作。在本系列的第二篇文章中,你将看到它如何用于文本分析和特征提取。

vaderSentiment

vaderSentiment 包提供了积极、消极和中性情绪的衡量标准。正如 原论文 的标题(《VADER:一个基于规则的社交媒体文本情感分析模型》)所示,这些模型是专门为社交媒体文本数据开发和调整的。VADER 接受了一组完整的人类标记过的数据的训练,包括常见的表情符号、UTF-8 编码的表情符号以及口语术语和缩写(例如 meh、lol、sux)。

对于给定的输入文本数据,vaderSentiment 返回一个极性分数百分比的三元组。它还提供了一个单个的评分标准,称为 vaderSentiment 复合指标。这是一个在 [-1, 1] 范围内的实值,其中对于分值大于 0.05 的情绪被认为是积极的,对于分值小于 -0.05 的被认为是消极的,否则为中性。

第 2 部分中,你将学习如何使用这些工具为你的设计添加情感分析功能。


via: https://opensource.com/article/19/4/social-media-sentiment-analysis-python

作者:Michael McCune 选题:lujun9972 译者:MjSeven 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出