Josh Fruhlinger 发布的文章

物联网(IoT)是一个由智能设备连接起来的网络,并提供了丰富的数据,但是它也有可能是一场安全领域的噩梦。

物联网 Internet of Things (IoT)是一个统称,指的是越来越多不属于传统计算设备,但却连接到互联网接收或发送数据,或既接收也发送的电子设备组成的网络。

现在有数不胜数的东西可以归为这一类:可以联网的“智能”版传统设备,比如说电冰箱和灯泡;那些只能运行于有互联网环境的小设备,比如像 Alexa 之类的电子助手;与互联网连接的传感器,它们正在改变着工厂、医疗、运输、物流中心和农场。

什么是物联网?

物联网将互联网、数据处理和分析的能力带给了现实的实物世界。对于消费者来说,这就意味着不需要键盘和显示器这些东西,就能和这个全球信息网络进行互动;他们的日常用品当中,很多都可以通过该网络接受操作指令,而只需很少的人工干预。

互联网长期以来为知识工作提供了便利,在企业环境当中,物联网也能为制造和分销带来同样的效率。全球数以百万计甚至数十亿计的嵌入式具有互联网功能的传感器正在提供令人难以置信丰富的数据集,企业可以利用这些数据来保证他们运营的安全、跟踪资产和减少人工流程。研究人员也可以使用物联网来获取人们的喜好和行为数据,尽管这些行为可能会严重影响隐私和安全。

它有多大?

一句话:非常庞大。Priceonomics 对此进行了分析:在 2020 年的时候,有超过 50 亿的物联网设备,这些设备可以生成 4.4 泽字节 zettabyte (LCTT 译注:1 zettabyte = 10 9 terabyte = 10 12 gigabyte)的数据。相比较,物联网设备在 2013 年仅仅产生了 1000 亿 千兆字节 gigabyte 的数据。在物联网市场上可能挣到的钱也同样让人瞠目;到 2025 年,这块市场的价值可以达到 1.6 万亿美元到 14.4 万亿美元不等。

物联网的历史

一个联网设备和传感器无处不在的世界,是科幻小说中最经典的景象之一。物联网传说中将 1970 年 卡耐基•梅隆大学的一台连接到 APRANET 的自动贩卖机 称之为世界上第一个物联网设备,而且许多技术都被吹捧为可以实现 “智能” 的物联网式特征,使其颇具有未来主义的光彩。但是“物联网”这个词是由英国的技术专家 Kevin Ashton 于 1999 年提出来的。

一开始,技术是滞后于当时对未来的憧憬的。每个与互联网相连的设备都需要一个处理器和一种能和其他东西通信的方式,无线的最好,这些因素都增加了物联网大规模实际应用的成本和性能要求,这种情况至少一直持续到 21 世纪头十年中期,直到摩尔定律赶上来。

一个重要的里程碑是 RFID 标签的大规模使用,这种价格低廉的极简转发器可以被贴在任何物品上,然后这些物品就可以连接到更大的互联网上了。对于设计者来说,无处不在的 Wi-Fi 和 4G 让任何地方的无线连接都变得非常简单。而且,IPv6 的出现再也不用让人们担心把数十亿小设备连接到互联网上会将 IP 地址耗尽。(相关报道:物联网网络可以促进 IPv6 的使用吗?

物联网是如何工作的?

物联网的基本元素是收集数据的设备。广义地说,它们是和互联网相连的设备,所以每一个设备都有 IP 地址。它们的复杂程度不一,这些设备涵盖了从工厂运输货物的自动驾驶车辆到监控建筑温度的简单传感器。这其中也包括每天统计步数的个人手环。为了让这些数据变得有意义,就需要对其收集、处理、过滤和分析,每一种数据都可以通过多种方式进行处理。

采集数据的方式是将数据从设备上传输到采集点。可以通过各种无线或者有线网络进行数据的转移。数据可以通过互联网发送到具有存储空间或者计算能力的数据中心或者云端,或者这些数据也可以分段进行传输,由中间设备汇总数据后再沿路径发送。

处理数据可以在数据中心或者云端进行,但是有时候这不太可行。对于一些非常重要的设备,比如说工业领域的关停设备,从设备上将数据发送到远程数据中心的延迟太大了。发送、处理、分析数据和返回指令(在管道爆炸之前关闭阀门)这些操作,来回一趟的时间可能要花费非常多的时间。在这种情况下, 边缘计算 edge-computing 就可以大显身手了,智能边缘设备可以汇总数据、分析数据,在需要的时候进行回应,所有这些都在相对较近的物理距离内进行,从而减少延迟。边缘设备可以有上游连接,这样数据就可以进一步被处理和储存。

物联网是如何工作的。

物联网设备的一些例子

本质上,任何可以搜集来自于真实世界数据,并且可以发送回去的设备都可以参与到物联网生态系统中。典型的例子包括智能家居设备、射频识别标签(RFID)和工业传感器。这些传感器可以监控一系列的因素,包括工业系统中的温度和压力、机器中关键设备的状态、患者身上与生命体征相关的信号、水电的使用情况,以及其它许许多多可能的东西。

整个工厂的机器人可以被认为是物联网设备,在工业环境和仓库中移动产品的自主车辆也是如此。

其他的例子包括可穿戴设备和家庭安防系统。还有一些其它更基础的设备,比如说树莓派Arduino,这些设备可以让你构建你自己的物联网终端节点。尽管你可能会认为你的智能手机是一台袖珍电脑,但它很可能也会以非常类似物联网的方式将你的位置和行为数据传送到后端服务。

设备管理

为了能让这些设备一起工作,所有这些设备都需要进行验证、分配、配置和监控,并且在必要时进行修复和更新。很多时候,这些操作都会在一个单一的设备供应商的专有系统中进行;要么就完全不会进行这些操作,而这样也是最有风险的。但是整个业界正在向标准化的设备管理模式过渡,这使得物联网设备之间可以相互操作,并保证设备不会被孤立。

物联网通信标准和协议

当物联网上的小设备和其他设备通信的时候,它们可以使用各种通信标准和协议,这其中许多都是为这些处理能力有限和电源功率不大的设备专门定制的。你一定听说过其中的一些,尽管有一些设备使用的是 Wi-Fi 或者蓝牙,但是更多的设备是使用了专门为物联网世界定制的标准。比如,ZigBee 就是一个低功耗、远距离传输的无线通信协议,而 MQTT( 消息队列遥测传输 Message Queuing Telemetry Transport )是为连接在不可靠或者易发生延迟的网络上的设备定制的一个发布/订阅信息协议。(参考 Network World 的词汇表:物联网标准和协议。)

物联网也会受益于 5G 为蜂窝网络带来的高速度和高带宽,尽管这种使用场景会滞后于普通的手机

物联网、边缘计算和云

边缘计算如何使物联网成为可能。

对于许多物联网系统来说,大量的数据会以极快的速度涌来,这种情况催生了一个新的科技领域, 边缘计算 edge computing ,它由放置在物联网设备附近的设备组成,处理来自那些设备的数据。这些机器对这些数据进行处理,只将相关的素材数据发送到一个更集中的系统系统进行分析。比如,想象一个由几十个物联网安防摄像头组成的网络,边缘计算会直接分析传入的视频,而且只有当其中一个摄像头检测到有物体移动的时候才向安全操作中心(SoC)发出警报,而不会是一下子将所有的在线数据流全部发送到建筑物的 SoC。

一旦这些数据已经被处理过了,它们又去哪里了呢?好吧,它也许会被送到你的数据中心,但是更多情况下,它最终会进入云。

对于物联网这种间歇或者不同步的数据来往场景来说,具有弹性的云计算是再适合不过的了。许多云计算巨头,包括谷歌微软亚马逊,都有物联网产品。

物联网平台

云计算巨头们正在尝试出售的,不仅仅是存放传感器搜集的数据的地方。他们正在提供一个可以协调物联网系统中各种元素的完整平台,平台会将很多功能捆绑在一起。本质上,物联网平台作为中间件,将物联网设备和边缘网关与你用来处理物联网数据的应用程序连接起来。也就是说,每一个平台的厂商看上去都会对物联网平台应该是什么这个问题有一些稍微不同的解释,以更好地与其他竞争者拉开差距

物联网和数据

正如前面所提到的,所有这些物联网设备收集了 ZB 级的数据,这些数据通过边缘网关被发送到平台上进行处理。在很多情况下,这些数据就是要部署物联网的首要原因。通过从现实世界中的传感器搜集来的数据,企业就可以实时的作出灵活的决定。

例如,Oracle 公司假想了一个这样的场景,当人们在主题公园的时候,会被鼓励下载一个可以提供公园信息的应用。同时,这个程序会将 GPS 信号发回到公园的管理部门来帮助他们预测排队时间。有了这些信息,公园就可以在短期内(比如通过增加员工数量来提升景点的一些容量)和长期内(通过了解哪些设施最受欢迎,那些最不受欢迎)采取行动。

这些决定可以在没有人工干预的情况作出。比如,从化工厂管道中的压力传感器收集的数据可以通过边缘设备的软件进行分析,从而发现管道破裂的威胁,这样的信息可以触发关闭阀门的信号,从而避免泄漏。

物联网和大数据分析

主题公园的例子可以让你很容易理解,但是和许多现实世界中物联网收集数据的操作相比,就显得小菜一碟了。许多大数据业务都会使用到来自物联网设备收集的信息,然后与其他数据关联,这样就可以分析预测到人类的行为。Software Advice 给出了一些例子,其中包括由 Birst 提供的一项服务,该服务将从联网的咖啡机中收集的咖啡冲泡的信息与社交媒体上发布的帖子进行匹配,看看顾客是否在网上谈论咖啡品牌。

另一个最近才发生的戏剧性的例子,X-Mode 发布了一张基于位置追踪数据的地图,地图上显示了在 2020 年 3 月春假的时候,正当新冠病毒在美国加速传播的时候,人们在 劳德代尔堡 Ft. Lauderdale 聚会完最终都去了哪里。这张地图令人震撼,不仅仅是因为它显示出病毒可能的扩散方向,更是因为它说明了物联网设备是可以多么密切地追踪我们。(更多关于物联网和分析的信息,请点击此处。)

物联网数据和 AI

物联网设备能够收集的数据量远远大于任何人类能够以有效的方式处理的数据量,而且这肯定也不是能实时处理的。我们已经看到,仅仅为了理解从物联网终端传来的原始数据,就需要边缘计算设备。此外,还需要检测和处理可能就是完全错误的数据

许多物联网供应商也同时提供机器学习和人工智能的功能,可以用来理解收集来的数据。比如,IBM 的 Jeopardy!-winning Watson 平台就可以在物联网数据集上进行训练,这样就可以在预测性维护领域产生有用的结果 —— 比如说,分析来自无人机的数据,可以区分桥梁上轻微的损坏和需要重视的裂缝。同时,ARM 也在研发低功耗芯片,它可以在物联网终端上提供 AI 的能力。

物联网和商业

物联网的商业用途包括跟踪客户、库存和重要部件的状态。IoT for All 列举了四个已经被物联网改变的行业:

  • 石油和天然气:与人工干预相比,物联网传感器可以更好的检测孤立的钻井现场。
  • 农业:通过物联网传感器获得的田间作物的数据,可以用来提高产量。
  • 采暖通风:制造商可以监控全国各地的气候控制系统。
  • 实体零售:当顾客在商店的某些地方停留的时候,可以通过手机进行微目标定位,提供优惠信息。

更普遍的情况是,企业正在寻找能够在四个领域上获得帮助的物联网解决方案:能源使用、资产跟踪、安全领域和客户体验。


via: https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html

作者:Josh Fruhlinger 选题:lujun9972 译者:Yufei-Yan 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

高性能计算(HPC)服务可能是一种满足不断增长的超级计算需求的方式,但依赖于使用场景,它们不一定比使用本地超级计算机好。

导弹和军用直升机上的电子设备需要工作在极端条件下。美国国防承包商 麦考密克·史蒂文森公司 McCormick Stevenson Corp. 在部署任何物理设备之前都会事先模拟它所能承受的真实条件。模拟依赖于像 Ansys 这样的有限元素分析软件,该软件需要强大的算力。

几年前的一天,它出乎意料地超出了计算极限。

麦考密克·史蒂文森公司的首席工程师 Mike Krawczyk 说:“我们的一些工作会使办公室的计算机不堪重负。购买机器并安装软件在经济上或计划上都不划算。”相反,他们与 Rescale 签约,该公司销售其超级计算机系统上的处理能力,而这只花费了他们购买新硬件上所需的一小部分。

麦考密克·史蒂文森公司已成为被称为超级计算即服务或高性能计算即服务(两个紧密相关的术语)市场的早期采用者之一。根据国家计算科学研究所的定义,HPC 是超级计算机在计算复杂问题上的应用,而超级计算机是处理能力最先进的那些计算机。

无论叫它什么,这些服务都在颠覆传统的超级计算市场,并将 HPC 能力带给以前负担不起的客户。但这不是万能的,而且绝对不是即插即用的,至少现在还不是。

HPC 服务实践

从最终用户的角度来看,HPC 即服务类似于早期大型机时代的批处理模型。 “我们创建一个 Ansys 批处理文件并将其发送过去,运行它,然后将结果文件取下来,然后导入到本地,” Krawczyk 说。

在 HPC 服务背后,云提供商在其自己的数据中心中运行超级计算基础设施,尽管这不一定意味着当你听到“超级计算机”时你就会看到最先进的硬件。正如 IBM OpenPOWER 计算技术副总裁 Dave Turek 解释的那样,HPC 服务的核心是“相互互连的服务器集合。你可以调用该虚拟计算基础设施,它能够在你提出问题时,使得许多不同的服务器并行工作来解决问题。”

理论听起来很简单。但都柏林城市大学数字商业教授 Theo Lynn 表示,要使其在实践中可行,需要解决一些技术问题。普通计算与 HPC 的区别在于那些互联互通 —— 高速的、低延时的而且昂贵的 —— 因此需要将这些互连引入云基础设施领域。在 HPC 服务可行之前,至少需要将存储性能和数据传输也提升到与本地 HPC 相同的水平。

但是 Lynn 说,一些制度创新相比技术更好的帮助了 HPC 服务的起飞。特别是,“我们现在看到越来越多的传统 HPC 应用采用云友好的许可模式 —— 这在过去是阻碍采用的障碍。”

他说,经济也改变了潜在的客户群。“云服务提供商通过向那些负担不起传统 HPC 所需的投资成本的低端 HPC 买家开放,进一步开放了市场。随着市场的开放,超大规模经济模型变得越来越多,更可行,成本开始下降。”

避免本地资本支出

HPC 服务对传统超级计算长期以来一直占据主导地位的私营部门客户具有吸引力。这些客户包括严重依赖复杂数学模型的行业,包括麦考密克·史蒂文森公司等国防承包商,以及石油和天然气公司、金融服务公司和生物技术公司。都柏林城市大学的 Lynn 补充说,松耦合的工作负载是一个特别好的用例,这意味着许多早期采用者将其用于 3D 图像渲染和相关应用。

但是,何时考虑 HPC 服务而不是本地 HPC 才有意义?对于德国的模拟烟雾在建筑物中的蔓延和火灾对建筑物结构部件的破坏的 hhpberlin 公司来说,答案是在它超出了其现有资源时。

Hpberlin 公司数值模拟的科学负责人 Susanne Kilian 说:“几年来,我们一直在运行自己的小型集群,该集群具有多达 80 个处理器核。……但是,随着应用复杂性的提高,这种架构已经越来越不足以支撑;可用容量并不总是够快速地处理项目。”

她说:“但是,仅仅花钱买一个新的集群并不是一个理想的解决方案:鉴于我们公司的规模和管理环境,不断地维护这个集群(定期进行软件和硬件升级)是不现实的。另外,需要模拟的项目数量会出现很大的波动,因此集群的利用率并不是真正可预测的。通常,使用率很高的阶段与很少使用或不使用的阶段交替出现。”通过转换为 HPC 服务模式,hhpberlin 释放了过剩的产能,并无需支付升级费用。

IBM 的 Turek 解释了不同公司在评估其需求时所经历的计算过程。对于拥有 30 名员工的生物科学初创公司来说,“你需要计算,但你真的不可能让 15% 的员工专门负责计算。这就像你可能也会说你不希望有专职的法律代表,所以你也会把它作为一项服务来做。”不过,对于一家较大的公司而言,最终归结为权衡 HPC 服务的运营费用与购买内部超级计算机或 HPC 集群的费用。

到目前为止,这些都是你采用任何云服务时都会遇到的类似的争论。但是,可以 HPC 市场的某些特殊性将使得衡量运营支出(OPEX)与资本支出(CAPEX)时选择前者。超级计算机不是诸如存储或 x86 服务器之类的商用硬件;它们非常昂贵,技术进步很快会使其过时。正如麦考密克·史蒂文森公司的 Krawczyk 所说,“这就像买车:只要车一开走,它就会开始贬值。”对于许多公司,尤其是规模较大,灵活性较差的公司,购买超级计算机的过程可能会陷入无望的泥潭。IBM 的 Turek 说:“你会被规划问题、建筑问题、施工问题、培训问题所困扰,然后必须执行 RFP。你必须得到 CIO 的支持。你必须与内部客户合作以确保服务的连续性。这是一个非常、非常复杂的过程,并没有很多机构有非常出色的执行力。”

一旦你选择走 HPC 服务的路线,你会发现你会得到你期望从云服务中得到的许多好处,特别是仅在业务需要时才需付费的能力,从而可以带来资源的高效利用。Gartner 高级总监兼分析师 Chirag Dekate 表示,当你对高性能计算有短期需求时,突发性负载是推动选择 HPC 服务的关键用例。

他说:“在制造业中,在产品设计阶段前后,HPC 活动往往会达到很高的峰值。但是,一旦产品设计完成,在其余产品开发周期中,HPC 资源的利用率就会降低。” 相比之下,他说:“当你拥有大型的、长期运行的工作时,云计算的经济性才会逐渐减弱。”

通过巧妙的系统设计,你可以将这些 HPC 服务突发活动与你自己的内部常规计算集成在一起。 埃森哲 Accenture 实验室常务董事 Teresa Tung 举了一个例子:“通过 API 访问 HPC 可以与传统计算无缝融合。在模型构建阶段,传统的 AI 流水线可能会在高端超级计算机上进行训练,但是最终经过反复按预期运行的训练好的模型将部署在云端的其他服务上,甚至部署在边缘设备上。”

它并不适合所有的应用场景

HPC 服务适合批处理和松耦合的场景。这与一个常见的 HPC 缺点有关:数据传输问题。高性能计算本身通常涉及庞大的数据集,而将所有这些信息通过互联网发送到云服务提供商并不容易。IBM 的 Turek 说:“我们与生物技术行业的客户交流,他们每月仅在数据费用上就花费 1000 万美元。”

而钱并不是唯一的潜在问题。构建一个利用数据的工作流程,可能会对你的工作流程提出挑战,让你绕过数据传输所需的漫长时间。hhpberlin 的 Kilian 说:“当我们拥有自己的 HPC 集群时,当然可以随时访问已经产生的仿真结果,从而进行交互式的临时评估。我们目前正努力达到在仿真的任意时刻都可以更高效地、交互地访问和评估云端生成的数据,而无需下载大量的模拟数据。”

Mike Krawczyk 提到了另一个绊脚石:合规性问题。国防承包商使用的任何服务都需要遵从《国际武器交易条例》(ITAR),麦考密克·史蒂文森公司之所以选择 Rescale,部分原因是因为这是他们发现的唯一符合的供应商。如今,尽管有更多的公司使用云服务,但任何希望使用云服务的公司都应该意识到使用其他人的基础设施时所涉及的法律和数据保护问题,而且许多 HPC 场景的敏感性使得 HPC 即服务的这个问题更加突出。

此外,HPC 服务所需的 IT 治理超出了目前的监管范围。例如,你需要跟踪你的软件许可证是否允许云使用­ —— 尤其是专门为本地 HPC 群集上运行而编写的软件包。通常,你需要跟踪 HPC 服务的使用方式,它可能是一个诱人的资源,尤其是当你从员工习惯的内部系统过渡到有可用的空闲的 HPC 能力时。例如,Avanade 全球平台高级主管兼 Azure 平台服务全球负责人 Ron Gilpin 建议,将你使用的处理核心的数量回拨给那些对时间不敏感的任务。他说:“如果一项工作只需要用一小时来完成而不需要在十分钟内就完成,那么它可以使用 165 个处理器而不是 1,000 个,从而节省了数千美元。”

对 HPC 技能的要求很高

一直以来,采用 HPC 的最大障碍之一就是其所需的独特的内部技能,而 HPC 服务并不能神奇使这种障碍消失。Gartner 的 Dekate 表示:“许多 CIO 将许多工作负载迁移到了云上,他们看到了成本的节约、敏捷性和效率的提升,因此相信在 HPC 生态中也可以达成类似的效果。一个普遍的误解是,他们可以通过彻底地免去系统管理员,并聘用能解决其 HPC 工作负载的新的云专家,从而以某种方式优化人力成本。”对于 HPC 即服务来说更是如此。

“但是 HPC 并不是一个主流的企业环境。” 他说。“你正在处理通过高带宽、低延迟的网络互联的高端计算节点,以及相当复杂的应用和中间件技术栈。许多情况下,甚至连文件系统层也是 HPC 环境所独有的。没有对应的技能可能会破坏稳定性。”

但是超级计算技能的供给却在减少,Dekate 将其称为劳动力“老龄化”,这是因为这一代开发人员将目光投向了新兴的初创公司,而不是学术界或使用 HPC 的更老套的公司。因此,HPC 服务供应商正在尽其所能地弥补差距。IBM 的 Turek 表示,许多 HPC 老手将总是想运行他们自己精心调整过的代码,并需要专门的调试器和其他工具来帮助他们在云端实现这一目标。但是,即使是 HPC 新手也可以调用供应商构建的代码库,以利用超级计算的并行处理能力。第三方软件提供商出售的交钥匙软件包可以减少 HPC 的许多复杂性。

埃森哲的 Tung 表示,该行业需要进一步加大投入才能真正繁荣。她说:“HPCaaS 已经创建了具有重大影响力的新功能,但还需要做的是使它易于被数据科学家、企业架构师或软件开发人员使用。这包括易用的 API、文档和示例代码。它包括解答问题的用户支持。仅仅提供 API 是不够的,API 需要适合特定的用途。对于数据科学家而言,这可能是以 Python 形式提供,并容易更换她已经在使用的框架。价值来自于使这些用户能够通过新的效率和性能最终使他们的工作得到改善,只要他们能够访问新的功能就可以了。” 如果供应商能够做到这一点,那么 HPC 服务才能真正将超级计算带给大众。


via: https://www.networkworld.com/article/3534725/the-ins-and-outs-of-high-performance-computing-as-a-service.html

作者:Josh Fruhlinger 选题:lujun9972 译者:messon007 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

5G 网络将使无线网络吞吐量提高 10 倍并且能够替代有线宽带。但是它们什么时候能够投入使用呢,为什么 5G 和物联网如此紧密地联系在一起呢?

Thinkstock

5G 无线 是一个概括的术语,用来描述一系列更快的无线互联网的标准和技术,理论上比 4G 快了 20 倍并且延迟降低了 120 倍,为物联网的发展和对新的高带宽应用的支持奠定了基础。

什么是 5G?科技还是流行词?

这个技术在世界范围内完全发挥它的潜能还需要数年时间,但同时当今一些 5G 网络服务已经投入使用。5G 不仅是一个技术术语,也是一个营销术语,并不是市场上的所有 5G 服务是标准的。

5G 与 4G 的速度对比

无线技术的每一代,最大的呼吁是增加速度。5G 网络潜在的峰值下载速度可以达到20 Gbps,一般在 10 Gbps。这不仅仅比当前 4G 网络更快,4G 目前峰值大约 1 Gbps,并且比更多家庭的有线网络连接更快。5G 提供的网络速度能够与光纤一较高下。

吞吐量不是 5G 仅有的速度提升;它还有的特点是极大降低了网络延迟。这是一个重要的区分:吞吐量用来测量花费多久来下载一个大文件,而延迟由网络瓶颈决定,延迟在往返的通讯中减慢了响应速度。

延迟很难量化,因为它因各种网络状态变化而变化,但是 5G 网络在理想情况下有能力使延迟率在 1 ms 内。总的来说,5G 延迟将比 4G 降低 60 到 120 倍。这会使很多应用变得可能,例如当前虚拟现实的延迟使它变得不实际。

5G 技术

5G 技术的基础有一系列标准定义,在过去的 10 年里一直在研究更好的部分。这些里面最重要的是 5G New Radio(5G NR),由 3GPP(一个为移动电话开发协议的标准化组织)组织标准化。5G NR 规定了很多 5G 设备操作的方式,于 2018 年 7 月 完成终版

很多独特的技术同时出现来尽可能地提升 5G 的速度并降低延迟,下面是一些重要的。

毫米波

5G 网络大部分使用在 30 到 300 GHz 范围的频率。(正如名称一样,这些频率的波长在 1 到 10 毫米之间)这些高频范围能够在每个时间单元比低频信号携带更多的信息,4G LTE 当前使用的就是通常频率在 1 GHz 以下的低频信号,或者 WiFi,最高 6 GHz。

毫米波技术传统上是昂贵并且难于部署的。科技进步已经克服了这些困难,这也是 5G 在如今成为了可能的原因。

小蜂窝

毫米波传输的一个缺点是当它们传输通过物理对象的时候比 4G 或 WiFi 信号更容易被干扰。

为了克服这些,5G 基础设施的模型将不同于 4G。替代了大的像景观一样移动天线桅杆,5G 网络将由分布在城市中大概间距 250 米的更小的基站提供支持,创建更小的服务区域。

这些 5G 基站的功率要求低于 4G,并且可以更容易地连接到建筑物和电线杆上。

大量的 MIMO

尽管 5G 基站比 4G 的对应部分小多了,但它们却带了更多的天线。这些天线是多输入多输出的(MIMO),意味着在相同的数据信道能够同时处理多个双向会话。5G 网络能够处理比 4G 网络超过 20 倍的会话。

大量的 MIMO 保证了基站容量限制下的极大提升,允许单个基站承载更多的设备会话。这就是 5G 可能推动物联网更广泛应用的原因。理论上,更多的连接到互联网的无线设备能够部署在相同的空间而不会使网络被压垮。

波束成形

确保所有的会话来回地到达正确的地方是比较棘手的,尤其是前面提到的毫米波信号的干涉问题。为了克服这些问题,5G 基站部署了更高级的波束技术,使用建设性和破坏性的无线电干扰来使信号有向而不是广播。这在一个特定的方向上有效地加强了信号强度和范围。

5G 可获得性

第一个 5G 商用网络 2018 年 5 月在卡塔尔推出。自那以后,5G 网络已经扩展到全世界,从阿根廷到越南。Lifewire 有一个不错的,经常更新的列表.

牢记一点的是,尽管这样,目前不是所有的 5G 网络都履行了所有的技术承诺。一些早期的 5G 产品依赖于现有的 4G 基础设施,减少了可以获得的潜在速度;其它服务为了市场目的而标榜 5G 但是并不符合标准。仔细观察美国无线运营商的产品都会发现一些陷阱。

无线运营商和 5G

技术上讲,5G 服务如今在美国已经可获得了。但声明中包含的注意事项因运营商而异,表明 5G 普及之前还有很长的路要走。

Verizon 可能是早期 5G 最大的推动者。它宣告到 2018 年 10 月 将有 4 个城市成为 5G 家庭的一部分,这是一项需要你的其他设备通过 WiFi 来连接特定的 5G 热点,由热点连接到网络的服务。

Verizon 计划四月在 Minneapolis 和 Chicago 发布 5G 移动服务,该服务将在这一年内传播到其他城市。访问 5G 网络将需要消费者每月额外花费费用,加上购买能够实际访问 5G 的手机花费(稍后会详细介绍)。另外,Verizon 的部署被称作 5G TF,实际上不符合 5G NR 的标准。

AT&T 声明在 2018 年 12 月将有美国的 12 个城市可以使用 5G,在 2019 年的末尾将增加 9 个城市,但最终在这些城市里,只有市中心商业区能够访问。为了访问 5G 网络,需要一个特定的 Netgear 热点来连接到 5G 服务,然后为手机和其他设备提供一个 Wi-Fi 信号。

与此同时,AT&T 也在推出 4G 网络的速度提升计划,被成为 5GE,即使这些提升和 5G 网络没有关系。(这会向后兼容

Sprint 将在 2019 年 5 月之前在四个城市提供 5G 服务,在年末将有更多。但是 Sprint 的 5G 产品充分利用了 MIMO 单元,他们没有使用毫米波信道,意味着 Sprint 的用户不会看到像其他运营商一样的速度提升。

T-Mobile 采用相似的模型,它在 2019 年年底之前不会推出 5G 服务,因为他们没有手机能够连接到它。

一个可能阻止 5G 速度的迅速传播的障碍是需要铺开所有这些小蜂窝基站。它们小的尺寸和较低的功耗需求使它们技术上比 4G 技术更容易部署,但这不意味着它能够很简单的使政府和财产拥有者信服到处安装一堆基站。Verizon 实际上建立了向本地民选官员请愿的网站来加速 5G 基站的部署。

5G 手机:何时可获得?何时可以买?

第一部声称为 5G 手机的是 Samsung Galaxy S10 5G,将在 2019 年夏末首发。你也可以从 Verizon 订阅一个“Moto Mod”,用来转换 Moto Z3 手机为 5G 兼容设备

但是除非你不能忍受作为一个早期使用者的诱惑,你会希望再等待一下;一些关于运营商的奇怪和突显的问题意味着可能你的手机不兼容你的运营商的整个 5G 网络

一个可能令你吃惊的落后者是苹果:分析者确信最早直到 2020 年以前 iPhone 不会与 5G 兼容。但这符合该公司的特点;苹果在 2012 年末也落后于三星发布兼容 4G 的手机。

不可否认,5G 洪流已经到来。5G 兼容的设备在 2019 年统治了巴塞罗那世界移动大会,因此期待视野里有更多的选择。

为什么人们已经在讨论 6G 了?

一些专家说缺点是5G 不能够达到延迟和可靠性的目标。这些完美主义者已经在探寻 6G,来试图解决这些缺点。

有一个研究新的能够融入 6G 技术的小组,自称为“融合 TeraHertz 通信与传感中心”(ComSenTer)。根据说明,他们努力让每个设备的带宽达到 100Gbps。

除了增加可靠性,还突破了可靠性并增加速度,6G 同样试图允许上千的并发连接。如果成功的话,这个特点将帮助物联网设备联网,使在工业设置中部署上千个传感器。

即使仍在胚胎当中,6G 已经由于新发现的 在基于 tera-hretz 的网络中潜在的中间人攻击的紧迫性面临安全的考虑。好消息是有大量时间来解决这个问题。6G 网络直到 2030 之前才可能出现。

阅读更多关于 5G 网络:


via: https://www.networkworld.com/article/3203489/what-is-5g-how-is-it-better-than-4g.html

作者:Josh Fruhlinger 选题:lujun9972 译者:warmfrog 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出