Brent Laster 发布的文章

在软件开发中经常会提到 持续集成 Continuous Integration (CI)和 持续交付 Continuous Delivery (CD)这几个术语。但它们真正的意思是什么呢?

在谈论软件开发时,经常会提到 持续集成 Continuous Integration (CI)和 持续交付 Continuous Delivery (CD)这几个术语。但它们真正的意思是什么呢?在本文中,我将解释这些和相关术语背后的含义和意义,例如 持续测试 Continuous Testing 持续部署 Continuous Deployment

概览

工厂里的装配线以快速、自动化、可重复的方式从原材料生产出消费品。同样,软件交付管道以快速、自动化和可重复的方式从源代码生成发布版本。如何完成这项工作的总体设计称为“持续交付”(CD)。启动装配线的过程称为“持续集成”(CI)。确保质量的过程称为“持续测试”,将最终产品提供给用户的过程称为“持续部署”。一些专家让这一切简单、顺畅、高效地运行,这些人被称为 运维开发 DevOps 践行者。

“持续”是什么意思?

“持续”用于描述遵循我在此提到的许多不同流程实践。这并不意味着“一直在运行”,而是“随时可运行”。在软件开发领域,它还包括几个核心概念/最佳实践。这些是:

  • 频繁发布:持续实践背后的目标是能够频繁地交付高质量的软件。此处的交付频率是可变的,可由开发团队或公司定义。对于某些产品,一季度、一个月、一周或一天交付一次可能已经足够频繁了。对于另一些来说,一天可能需要多次交付也是可行的。所谓持续也有“偶尔、按需”的方面。最终目标是相同的:在可重复、可靠的过程中为最终用户提供高质量的软件更新。通常,这可以通过很少甚至无需用户的交互或掌握的知识来完成(想想设备更新)。
  • 自动化流程:实现此频率的关键是用自动化流程来处理软件生产中的方方面面。这包括构建、测试、分析、版本控制,以及在某些情况下的部署。
  • 可重复:如果我们使用的自动化流程在给定相同输入的情况下始终具有相同的行为,则这个过程应该是可重复的。也就是说,如果我们把某个历史版本的代码作为输入,我们应该得到对应相同的可交付产出。这也假设我们有相同版本的外部依赖项(即我们不创建该版本代码使用的其它交付物)。理想情况下,这也意味着可以对管道中的流程进行版本控制和重建(请参阅稍后的 DevOps 讨论)。
  • 快速迭代:“快速”在这里是个相对术语,但无论软件更新/发布的频率如何,预期的持续过程都会以高效的方式将源代码转换为交付物。自动化负责大部分工作,但自动化处理的过程可能仍然很慢。例如,对于每天需要多次发布候选版更新的产品来说,一轮 集成测试 integrated testing 下来耗时就要大半天可能就太慢了。

什么是“持续交付管道”?

将源代码转换为可发布产品的多个不同的 任务 task 作业 job 通常串联成一个软件“管道”,一个自动流程成功完成后会启动管道中的下一个流程。这些管道有许多不同的叫法,例如持续交付管道、部署管道和软件开发管道。大体上讲,程序管理者在管道执行时管理管道各部分的定义、运行、监控和报告。

持续交付管道是如何工作的?

软件交付管道的实际实现可以有很大不同。有许多程序可用在管道中,用于源代码跟踪、构建、测试、指标采集,版本管理等各个方面。但整体工作流程通常是相同的。单个业务流程/工作流应用程序管理整个管道,每个流程作为独立的作业运行或由该应用程序进行阶段管理。通常,在业务流程中,这些独立作业是以应用程序可理解并可作为工作流程管理的语法和结构定义的。

这些作业被用于一个或多个功能(构建、测试、部署等)。每个作业可能使用不同的技术或多种技术。关键是作业是自动化的、高效的,并且可重复的。如果作业成功,则工作流管理器将触发管道中的下一个作业。如果作业失败,工作流管理器会向开发人员、测试人员和其他人发出警报,以便他们尽快纠正问题。这个过程是自动化的,所以比手动运行一组过程可更快地找到错误。这种快速排错称为 快速失败 fail fast ,并且在抵达管道端点方面同样有价值。

“快速失败”是什么意思?

管道的工作之一就是快速处理变更。另一个是监视创建发布的不同任务/作业。由于编译失败或测试未通过的代码可以阻止管道继续运行,因此快速通知用户此类情况非常重要。快速失败指的是在管道流程中尽快发现问题并快速通知用户的方式,这样可以及时修正问题并重新提交代码以便使管道再次运行。通常在管道流程中可通过查看历史记录来确定是谁做了那次修改并通知此人及其团队。

所有持续交付管道都应该被自动化吗?

管道的几乎所有部分都是应该自动化的。对于某些部分,有一些人为干预/互动的地方可能是有意义的。一个例子可能是 用户验收测试 user-acceptance testing (让最终用户试用软件并确保它能达到他们想要/期望的水平)。另一种情况可能是部署到生产环境时用户希望拥有更多的人为控制。当然,如果代码不正确或不能运行,则需要人工干预。

有了对“持续”含义理解的背景,让我们看看不同类型的持续流程以及它们在软件管道上下文中的含义。

什么是“持续集成”?

持续集成(CI)是在源代码变更后自动检测、拉取、构建和(在大多数情况下)进行单元测试的过程。持续集成是启动管道的环节(尽管某些预验证 —— 通常称为 上线前检查 pre-flight checks —— 有时会被归在持续集成之前)。

持续集成的目标是快速确保开发人员新提交的变更是好的,并且适合在代码库中进一步使用。

持续集成是如何工作的?

持续集成的基本思想是让一个自动化过程监测一个或多个源代码仓库是否有变更。当变更被推送到仓库时,它会监测到更改、下载副本、构建并运行任何相关的单元测试。

持续集成如何监测变更?

目前,监测程序通常是像 Jenkins 这样的应用程序,它还协调管道中运行的所有(或大多数)进程,监视变更是其功能之一。监测程序可以以几种不同方式监测变更。这些包括:

  • 轮询:监测程序反复询问代码管理系统,“代码仓库里有什么我感兴趣的新东西吗?”当代码管理系统有新的变更时,监测程序会“唤醒”并完成其工作以获取新代码并构建/测试它。
  • 定期:监测程序配置为定期启动构建,无论源码是否有变更。理想情况下,如果没有变更,则不会构建任何新内容,因此这不会增加额外的成本。
  • 推送:这与用于代码管理系统检查的监测程序相反。在这种情况下,代码管理系统被配置为提交变更到仓库时将“推送”一个通知到监测程序。最常见的是,这可以以 webhook 的形式完成 —— 在新代码被推送时一个 挂勾 hook 的程序通过互联网向监测程序发送通知。为此,监测程序必须具有可以通过网络接收 webhook 信息的开放端口。

什么是“预检查”(又称“上线前检查”)?

在将代码引入仓库并触发持续集成之前,可以进行其它验证。这遵循了最佳实践,例如 测试构建 test build 代码审查 code review 。它们通常在代码引入管道之前构建到开发过程中。但是一些管道也可能将它们作为其监控流程或工作流的一部分。

例如,一个名为 Gerrit 的工具允许在开发人员推送代码之后但在允许进入(Git 远程)仓库之前进行正式的代码审查、验证和测试构建。Gerrit 位于开发人员的工作区和 Git 远程仓库之间。它会“接收”来自开发人员的推送,并且可以执行通过/失败验证以确保它们在被允许进入仓库之前的检查是通过的。这可以包括检测新变更并启动构建测试(CI 的一种形式)。它还允许开发者在那时进行正式的代码审查。这种方式有一种额外的可信度评估机制,即当变更的代码被合并到代码库中时不会破坏任何内容。

什么是“单元测试”?

单元测试(也称为“提交测试”),是由开发人员编写的小型的专项测试,以确保新代码独立工作。“独立”这里意味着不依赖或调用其它不可直接访问的代码,也不依赖外部数据源或其它模块。如果运行代码需要这样的依赖关系,那么这些资源可以用 模拟 mock 来表示。模拟是指使用看起来像资源的 代码存根 code stub ,可以返回值,但不实现任何功能。

在大多数组织中,开发人员负责创建单元测试以证明其代码正确。事实上,一种称为 测试驱动开发 test-driven develop (TDD)的模型要求将首先设计单元测试作为清楚地验证代码功能的基础。因为这样的代码可以更改速度快且改动量大,所以它们也必须执行很快。

由于这与持续集成工作流有关,因此开发人员在本地工作环境中编写或更新代码,并通单元测试来确保新开发的功能或方法正确。通常,这些测试采用断言形式,即函数或方法的给定输入集产生给定的输出集。它们通常进行测试以确保正确标记和处理出错条件。有很多单元测试框架都很有用,例如用于 Java 开发的 JUnit

什么是“持续测试”?

持续测试是指在代码通过持续交付管道时运行扩展范围的自动化测试的实践。单元测试通常与构建过程集成,作为持续集成阶段的一部分,并专注于和其它与之交互的代码隔离的测试。

除此之外,可以有或者应该有各种形式的测试。这些可包括:

  • 集成测试 验证组件和服务组合在一起是否正常。
  • 功能测试 验证产品中执行功能的结果是否符合预期。
  • 验收测试 根据可接受的标准验证产品的某些特征。如性能、可伸缩性、抗压能力和容量。

所有这些可能不存在于自动化的管道中,并且一些不同类型的测试分类界限也不是很清晰。但是,在交付管道中持续测试的目标始终是相同的:通过持续的测试级别证明代码的质量可以在正在进行的发布中使用。在持续集成快速的原则基础上,第二个目标是快速发现问题并提醒开发团队。这通常被称为快速失败。

除了测试之外,还可以对管道中的代码进行哪些其它类型的验证?

除了测试是否通过之外,还有一些应用程序可以告诉我们测试用例执行(覆盖)的源代码行数。这是一个可以衡量代码量指标的例子。这个指标称为 代码覆盖率 code-coverage ,可以通过工具(例如用于 Java 的 JaCoCo)进行统计。

还有很多其它类型的指标统计,例如代码行数、复杂度以及代码结构对比分析等。诸如 SonarQube 之类的工具可以检查源代码并计算这些指标。此外,用户还可以为他们可接受的“合格”范围的指标设置阈值。然后可以在管道中针对这些阈值设置一个检查,如果结果不在可接受范围内,则流程终端上。SonarQube 等应用程序具有很高的可配置性,可以设置仅检查团队感兴趣的内容。

什么是“持续交付”?

持续交付(CD)通常是指整个流程链(管道),它自动监测源代码变更并通过构建、测试、打包和相关操作运行它们以生成可部署的版本,基本上没有任何人为干预。

持续交付在软件开发过程中的目标是自动化、效率、可靠性、可重复性和质量保障(通过持续测试)。

持续交付包含持续集成(自动检测源代码变更、执行构建过程、运行单元测试以验证变更),持续测试(对代码运行各种测试以保障代码质量),和(可选)持续部署(通过管道发布版本自动提供给用户)。

如何在管道中识别/跟踪多个版本?

版本控制是持续交付和管道的关键概念。持续意味着能够经常集成新代码并提供更新版本。但这并不意味着每个人都想要“最新、最好的”。对于想要开发或测试已知的稳定版本的内部团队来说尤其如此。因此,管道创建并轻松存储和访问的这些版本化对象非常重要。

在管道中从源代码创建的对象通常可以称为 工件 artifact 。工件在构建时应该有应用于它们的版本。将版本号分配给工件的推荐策略称为 语义化版本控制 semantic versioning 。(这也适用于从外部源引入的依赖工件的版本。)

语义版本号有三个部分: 主要版本 major 次要版本 minor 补丁版本 patch 。(例如,1.4.3 反映了主要版本 1,次要版本 4 和补丁版本 3。)这个想法是,其中一个部分的更改表示工件中的更新级别。主要版本仅针对不兼容的 API 更改而递增。当以 向后兼容 backward-compatible 的方式添加功能时,次要版本会增加。当进行向后兼容的版本 bug 修复时,补丁版本会增加。这些是建议的指导方针,但只要团队在整个组织内以一致且易于理解的方式这样做,团队就可以自由地改变这种方法。例如,每次为发布完成构建时增加的数字可以放在补丁字段中。

如何“分销”工件?

团队可以为工件分配 分销 promotion 级别以指示适用于测试、生产等环境或用途。有很多方法。可以用 Jenkins 或 Artifactory 等应用程序进行分销。或者一个简单的方案可以在版本号字符串的末尾添加标签。例如,-snapshot 可以指示用于构建工件的代码的最新版本(快照)。可以使用各种分销策略或工具将工件“提升”到其它级别,例如 -milestone-production,作为工件稳定性和完备性版本的标记。

如何存储和访问多个工件版本?

从源代码构建的版本化工件可以通过管理 工件仓库 artifact repository 的应用程序进行存储。工件仓库就像构建工件的版本控制工具一样。像 Artifactory 或 Nexus 这类应用可以接受版本化工件,存储和跟踪它们,并提供检索的方法。

管道用户可以指定他们想要使用的版本,并在这些版本中使用管道。

什么是“持续部署”?

持续部署(CD)是指能够自动提供持续交付管道中发布版本给最终用户使用的想法。根据用户的安装方式,可能是在云环境中自动部署、app 升级(如手机上的应用程序)、更新网站或只更新可用版本列表。

这里的一个重点是,仅仅因为可以进行持续部署并不意味着始终部署来自管道的每组可交付成果。它实际上指,通过管道每套可交付成果都被证明是“可部署的”。这在很大程度上是由持续测试的连续级别完成的(参见本文中的持续测试部分)。

管道构建的发布成果是否被部署可以通过人工决策,或利用在完全部署之前“试用”发布的各种方法来进行控制。

在完全部署到所有用户之前,有哪些方法可以测试部署?

由于必须回滚/撤消对所有用户的部署可能是一种代价高昂的情况(无论是技术上还是用户的感知),已经有许多技术允许“尝试”部署新功能并在发现问题时轻松“撤消”它们。这些包括:

蓝/绿测试/部署

在这种部署软件的方法中,维护了两个相同的主机环境 —— 一个“蓝色” 和一个“绿色”。(颜色并不重要,仅作为标识。)对应来说,其中一个是“生产环境”,另一个是“预发布环境”。

在这些实例的前面是调度系统,它们充当产品或应用程序的客户“网关”。通过将调度系统指向蓝色或绿色实例,可以将客户流量引流到期望的部署环境。通过这种方式,切换指向哪个部署实例(蓝色或绿色)对用户来说是快速,简单和透明的。

当新版本准备好进行测试时,可以将其部署到非生产环境中。在经过测试和批准后,可以更改调度系统设置以将传入的线上流量指向它(因此它将成为新的生产站点)。现在,曾作为生产环境实例可供下一次候选发布使用。

同理,如果在最新部署中发现问题并且之前的生产实例仍然可用,则简单的更改可以将客户流量引流回到之前的生产实例 —— 有效地将问题实例“下线”并且回滚到以前的版本。然后有问题的新实例可以在其它区域中修复。

金丝雀测试/部署

在某些情况下,通过蓝/绿发布切换整个部署可能不可行或不是期望的那样。另一种方法是为 金丝雀 canary 测试/部署。在这种模型中,一部分客户流量被重新引流到新的版本部署中。例如,新版本的搜索服务可以与当前服务的生产版本一起部署。然后,可以将 10% 的搜索查询引流到新版本,以在生产环境中对其进行测试。

如果服务那些流量的新版本没问题,那么可能会有更多的流量会被逐渐引流过去。如果仍然没有问题出现,那么随着时间的推移,可以对新版本增量部署,直到 100% 的流量都调度到新版本。这有效地“更替”了以前版本的服务,并让新版本对所有客户生效。

功能开关

对于可能需要轻松关掉的新功能(如果发现问题),开发人员可以添加 功能开关 feature toggles 。这是代码中的 if-then 软件功能开关,仅在设置数据值时才激活新代码。此数据值可以是全局可访问的位置,部署的应用程序将检查该位置是否应执行新代码。如果设置了数据值,则执行代码;如果没有,则不执行。

这为开发人员提供了一个远程“终止开关”,以便在部署到生产环境后发现问题时关闭新功能。

暗箱发布

暗箱发布 dark launch 中,代码被逐步测试/部署到生产环境中,但是用户不会看到更改(因此名称中有 暗箱 dark 一词)。例如,在生产版本中,网页查询的某些部分可能会重定向到查询新数据源的服务。开发人员可收集此信息进行分析,而不会将有关接口,事务或结果的任何信息暴露给用户。

这个想法是想获取候选版本在生产环境负载下如何执行的真实信息,而不会影响用户或改变他们的经验。随着时间的推移,可以调度更多负载,直到遇到问题或认为新功能已准备好供所有人使用。实际上功能开关标志可用于这种暗箱发布机制。

什么是“运维开发”?

运维开发 DevOps 是关于如何使开发和运维团队更容易合作开发和发布软件的一系列想法和推荐的实践。从历史上看,开发团队研发了产品,但没有像客户那样以常规、可重复的方式安装/部署它们。在整个周期中,这组安装/部署任务(以及其它支持任务)留给运维团队负责。这经常导致很多混乱和问题,因为运维团队在后期才开始介入,并且必须在短时间内完成他们的工作。同样,开发团队经常处于不利地位 —— 因为他们没有充分测试产品的安装/部署功能,他们可能会对该过程中出现的问题感到惊讶。

这往往导致开发和运维团队之间严重脱节和缺乏合作。DevOps 理念主张是贯穿整个开发周期的开发和运维综合协作的工作方式,就像持续交付那样。

持续交付如何与运维开发相交?

持续交付管道是几个 DevOps 理念的实现。产品开发的后期阶段(如打包和部署)始终可以在管道的每次运行中完成,而不是等待产品开发周期中的特定时间。同样,从开发到部署过程中,开发和运维都可以清楚地看到事情何时起作用,何时不起作用。要使持续交付管道循环成功,不仅要通过与开发相关的流程,还要通过与运维相关的流程。

说得更远一些,DevOps 建议实现管道的基础架构也会被视为代码。也就是说,它应该自动配置、可跟踪、易于修改,并在管道发生变化时触发新一轮运行。这可以通过将管道实现为代码来完成。

什么是“管道即代码”?

管道即代码 pipeline-as-code 是通过编写代码创建管道作业/任务的通用术语,就像开发人员编写代码一样。它的目标是将管道实现表示为代码,以便它可以与代码一起存储、评审、跟踪,如果出现问题并且必须终止管道,则可以轻松地重建。有几个工具允许这样做,如 Jenkins 2

DevOps 如何影响生产软件的基础设施?

传统意义上,管道中使用的各个硬件系统都有配套的软件(操作系统、应用程序、开发工具等)。在极端情况下,每个系统都是手工设置来定制的。这意味着当系统出现问题或需要更新时,这通常也是一项自定义任务。这种方法违背了持续交付的基本理念,即具有易于重现和可跟踪的环境。

多年来,很多应用被开发用于标准化交付(安装和配置)系统。同样, 虚拟机 virtual machine 被开发为模拟在其它计算机之上运行的计算机程序。这些 VM 要有管理程序才能在底层主机系统上运行,并且它们需要自己的操作系统副本才能运行。

后来有了 容器 container 。容器虽然在概念上与 VM 类似,但工作方式不同。它们只需使用一些现有的操作系统结构来划分隔离空间,而不需要运行单独的程序和操作系统的副本。因此,它们的行为类似于 VM 以提供隔离但不需要过多的开销。

VM 和容器是根据配置定义创建的,因此可以轻易地销毁和重建,而不会影响运行它们的主机系统。这允许运行管道的系统也可重建。此外,对于容器,我们可以跟踪其构建定义文件的更改 —— 就像对源代码一样。

因此,如果遇到 VM 或容器中的问题,我们可以更容易、更快速地销毁和重建它们,而不是在当前环境尝试调试和修复。

这也意味着对管道代码的任何更改都可以触发管道新一轮运行(通过 CI),就像对代码的更改一样。这是 DevOps 关于基础架构的核心理念之一。


via: https://opensource.com/article/18/8/what-cicd

作者:Brent Laster 选题:lujun9972 译者:pityonline 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

用简洁而优雅的 Git 命令撤销仓库中的改变。

使用 Git 工作时其中一个鲜为人知(和没有意识到)的方面就是,如何轻松地返回到你以前的位置 —— 也就是说,在仓库中如何很容易地去撤销那怕是重大的变更。在本文中,我们将带你了解如何去重置、恢复和完全回到以前的状态,做到这些只需要几个简单而优雅的 Git 命令。

重置

我们从 Git 的 reset 命令开始。确实,你应该能够认为它就是一个 “回滚” —— 它将你本地环境返回到之前的提交。这里的 “本地环境” 一词,我们指的是你的本地仓库、暂存区以及工作目录。

先看一下图 1。在这里我们有一个在 Git 中表示一系列提交的示意图。在 Git 中一个分支简单来说就是一个命名的、指向一个特定的提交的可移动指针。在这里,我们的 master 分支是指向链中最新提交的一个指针。

 title=

图 1:有仓库、暂存区、和工作目录的本地环境

如果看一下我们的 master 分支是什么,可以看一下到目前为止我们产生的提交链。

$ git log --oneline
b764644 File with three lines
7c709f0 File with two lines
9ef9173 File with one line

如果我们想回滚到前一个提交会发生什么呢?很简单 —— 我们只需要移动分支指针即可。Git 提供了为我们做这个动作的 reset 命令。例如,如果我们重置 master 为当前提交回退两个提交的位置,我们可以使用如下之一的方法:

$ git reset 9ef9173

(使用一个绝对的提交 SHA1 值 9ef9173

或:

$ git reset current~2

(在 “current” 标签之前,使用一个相对值 -2)

图 2 展示了操作的结果。在这之后,如果我们在当前分支(master)上运行一个 git log 命令,我们将看到只有一个提交。

$ git log --oneline

9ef9173 File with one line

 title=

图 2:在 reset 之后

git reset 命令也包含使用一些选项,可以让你最终满意的提交内容去更新本地环境的其它部分。这些选项包括:hard 在仓库中去重置指向的提交,用提交的内容去填充工作目录,并重置暂存区;soft 仅重置仓库中的指针;而 mixed(默认值)将重置指针和暂存区。

这些选项在特定情况下非常有用,比如,git reset --hard <commit sha1 | reference> 这个命令将覆盖本地任何未提交的更改。实际上,它重置了(清除掉)暂存区,并用你重置的提交内容去覆盖了工作区中的内容。在你使用 hard 选项之前,一定要确保这是你真正地想要做的操作,因为这个命令会覆盖掉任何未提交的更改。

恢复

git revert 命令的实际结果类似于 reset,但它的方法不同。reset 命令(默认)是在链中向后移动分支的指针去“撤销”更改,revert 命令是在链中添加一个新的提交去“取消”更改。再次查看图 1 可以非常轻松地看到这种影响。如果我们在链中的每个提交中向文件添加一行,一种方法是使用 reset 使那个提交返回到仅有两行的那个版本,如:git reset HEAD~1

另一个方法是添加一个新的提交去删除第三行,以使最终结束变成两行的版本 —— 实际效果也是取消了那个更改。使用一个 git revert 命令可以实现上述目的,比如:

$ git revert HEAD

因为它添加了一个新的提交,Git 将提示如下的提交信息:

Revert "File with three lines"

This reverts commit b764644bad524b804577684bf74e7bca3117f554.

# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
# On branch master
# Changes to be committed:
#       modified:   file1.txt
#

图 3(在下面)展示了 revert 操作完成后的结果。

如果我们现在运行一个 git log 命令,我们将看到前面的提交之前的一个新提交。

$ git log --oneline
11b7712 Revert "File with three lines"
b764644 File with three lines
7c709f0 File with two lines
9ef9173 File with one line

这里是工作目录中这个文件当前的内容:

$ cat <filename>
Line 1
Line 2

img

图 3 revert 操作之后

恢复或重置如何选择?

为什么要优先选择 revert 而不是 reset 操作?如果你已经将你的提交链推送到远程仓库(其它人可以已经拉取了你的代码并开始工作),一个 revert 操作是让他们去获得更改的非常友好的方式。这是因为 Git 工作流可以非常好地在分支的末端添加提交,但是当有人 reset 分支指针之后,一组提交将再也看不见了,这可能会是一个挑战。

当我们以这种方式使用 Git 工作时,我们的基本规则之一是:在你的本地仓库中使用这种方式去更改还没有推送的代码是可以的。如果提交已经推送到了远程仓库,并且可能其它人已经使用它来工作了,那么应该避免这些重写提交历史的更改。

总之,如果你想回滚、撤销或者重写其它人已经在使用的一个提交链的历史,当你的同事试图将他们的更改合并到他们拉取的原始链上时,他们可能需要做更多的工作。如果你必须对已经推送并被其他人正在使用的代码做更改,在你做更改之前必须要与他们沟通,让他们先合并他们的更改。然后在这个侵入操作没有需要合并的内容之后,他们再拉取最新的副本。

你可能注意到了,在我们做了 reset 操作之后,原始的提交链仍然在那个位置。我们移动了指针,然后 reset 代码回到前一个提交,但它并没有删除任何提交。换句话说就是,只要我们知道我们所指向的原始提交,我们能够通过简单的返回到分支的原始链的头部来“恢复”指针到前面的位置:

git reset <sha1 of commit>

当提交被替换之后,我们在 Git 中做的大量其它操作也会发生类似的事情。新提交被创建,有关的指针被移动到一个新的链,但是老的提交链仍然存在。

变基

现在我们来看一个分支变基。假设我们有两个分支:master 和 feature,提交链如下图 4 所示。master 的提交链是 C4->C2->C1->C0 和 feature 的提交链是 C5->C3->C2->C1->C0

 title=

图 4:master 和 feature 分支的提交链

如果我们在分支中看它的提交记录,它们看起来应该像下面的这样。(为了易于理解,C 表示提交信息)

$ git log --oneline master
6a92e7a C4
259bf36 C2
f33ae68 C1
5043e79 C0

$ git log --oneline feature
79768b8 C5
000f9ae C3
259bf36 C2
f33ae68 C1
5043e79 C0

我告诉人们在 Git 中,可以将 rebase 认为是 “将历史合并”。从本质上来说,Git 将一个分支中的每个不同提交尝试“重放”到另一个分支中。

因此,我们使用基本的 Git 命令,可以变基一个 feature 分支进入到 master 中,并将它拼入到 C4 中(比如,将它插入到 feature 的链中)。操作命令如下:

$ git checkout feature
$ git rebase master

First, rewinding head to replay your work on top of it...
Applying: C3
Applying: C5

完成以后,我们的提交链将变成如下图 5 的样子。

 title=

图 5:rebase 命令完成后的提交链

接着,我们看一下提交历史,它应该变成如下的样子。

$ git log --oneline master
6a92e7a C4
259bf36 C2
f33ae68 C1
5043e79 C0

$ git log --oneline feature
c4533a5 C5
64f2047 C3
6a92e7a C4
259bf36 C2
f33ae68 C1
5043e79 C0

注意那个 C3'C5'— 在 master 分支上已处于提交链的“顶部”,由于产生了更改而创建了新提交。但是也要注意的是,rebase 后“原始的” C3C5 仍然在那里 — 只是再没有一个分支指向它们而已。

如果我们做了这个变基,然后确定这不是我们想要的结果,希望去撤销它,我们可以做下面示例所做的操作:

$ git reset 79768b8

由于这个简单的变更,现在我们的分支将重新指向到做 rebase 操作之前一模一样的位置 —— 完全等效于撤销操作(图 6)。

 title=

图 6:撤销 rebase 操作之后

如果你想不起来之前一个操作指向的一个分支上提交了什么内容怎么办?幸运的是,Git 命令依然可以帮助你。用这种方式可以修改大多数操作的指针,Git 会记住你的原始提交。事实上,它是在 .git 仓库目录下,将它保存为一个特定的名为 ORIG_HEAD 的文件中。在它被修改之前,那个路径是一个包含了大多数最新引用的文件。如果我们 cat 这个文件,我们可以看到它的内容。

$ cat .git/ORIG_HEAD
79768b891f47ce06f13456a7e222536ee47ad2fe

我们可以使用 reset 命令,正如前面所述,它返回指向到原始的链。然后它的历史将是如下的这样:

$ git log --oneline feature
79768b8 C5
000f9ae C3
259bf36 C2
f33ae68 C1
5043e79 C0

在 reflog 中是获取这些信息的另外一个地方。reflog 是你本地仓库中相关切换或更改的详细描述清单。你可以使用 git reflog 命令去查看它的内容:

$ git reflog
79768b8 HEAD@{0}: reset: moving to 79768b
c4533a5 HEAD@{1}: rebase finished: returning to refs/heads/feature
c4533a5 HEAD@{2}: rebase: C5
64f2047 HEAD@{3}: rebase: C3
6a92e7a HEAD@{4}: rebase: checkout master
79768b8 HEAD@{5}: checkout: moving from feature to feature
79768b8 HEAD@{6}: commit: C5
000f9ae HEAD@{7}: checkout: moving from master to feature
6a92e7a HEAD@{8}: commit: C4
259bf36 HEAD@{9}: checkout: moving from feature to master
000f9ae HEAD@{10}: commit: C3
259bf36 HEAD@{11}: checkout: moving from master to feature
259bf36 HEAD@{12}: commit: C2
f33ae68 HEAD@{13}: commit: C1
5043e79 HEAD@{14}: commit (initial): C0

你可以使用日志中列出的、你看到的相关命名格式,去重置任何一个东西:

$ git reset HEAD@{1}

一旦你理解了当“修改”链的操作发生后,Git 是如何跟踪原始提交链的基本原理,那么在 Git 中做一些更改将不再是那么可怕的事。这就是强大的 Git 的核心能力之一:能够很快速、很容易地尝试任何事情,并且如果不成功就撤销它们。


via: https://opensource.com/article/18/6/git-reset-revert-rebase-commands

作者:Brent Laster 选题:lujun9972 译者:qhwdw 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出